
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 124, Number 8, August 1996

A SMALL DOWKER SPACE IN ZFC
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Abstract. We construct a hereditarily normal topological space whose prod-
uct with the unit interval is not normal. The space is σ-relatively discrete and
has cardinality of the continuum c.

Introduction. A Dowker space is a normal Hausdorff space whose product with
the closed unit interval I is not normal. Whether there are such spaces at all
was raised as a problem by C. H. Dowker [D] in 1951 who also gave an internal
characterization of Dowker spaces. (See Lemma 0.1 below.)

Constructing Dowker spaces turned out to be a hard, many-faceted problem in
general and set-theoretic topology, of basically combinatorial set-theoretic nature.
It has extensive, rich literature. (See the survey paper [R4] and also [R6], [W2] for
some update.) There has been precisely one Dowker space built in usual (ZFC)
mathematics by Mary Ellen Rudin [R2] in 1971. This space has cardinality and
weight ℵωω, and it has few nice properties beyond normality. The search for a smaller
example is referred to as the Small Dowker Space Problem. The effort of a number
of mathematicians resulted in nice, small Dowker spaces in many models of set
theory [Be], [C], [G], [JKR], [R1], [R5], [We], but no example different from Rudin’s
has been constructed in ZFC alone.

In this paper we give a solution to the Small Dowker Space Problem by con-
structing, without extra set-theoretic axioms, a hereditarily normal, σ-relatively
discrete Dowker space of cardinality of the continuum c. Such a space of strongly
compact cardinality (under the set-theoretic assumption that such large cardinals
exist), was constructed by S. Watson [W1]. Our proof uses a general combinatorial
technique originated in M. E. Rudin’s [R3] and later used by the author [B] to
construct Q-set spaces.

Our terminology and notation follow the standards of contemporary set theory
and set-theoretic topology as used in [K] and [KV]. In particular, [A]<κ stands
for the family of all subsets of A of cardinality < κ and Fn(κ, 2) denotes all finite
partial functions from κ to 2 = {0, 1}.

We shall make use of Dowker’s internal characterization.

Lemma 0.1. The following conditions are equivalent for a normal T1 space X.
(a) X is a Dowker space.
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(b) X is not countably metacompact, i.e., there is an increasing open cover G0 ⊂
G1 ⊂ . . . ⊂ Gn ⊂ . . . , n ε ω, of X such that for every sequence of closed sets
Fn ⊂ Gn, ∪nεωFn 6= X.

The space.

Theorem 1.1. There is a hereditarily normal, σ-relatively discrete Dowker space
of cardinality c.

The heart of the proof of Theorem 1.1 is the following combinatorial lemma.

Lemma 1.2. Let λ = 2c, and let 〈cξ〉ξ<λ be a one-to-one enumeration of c2 = {c : c
is a function from c to 2}. Then there is a sequence 〈dξ〉ξ<λ of functions dξ : c→ 2
in such a way that for every g : c → [λ]<ω, f : c → ω and h : c → [c]<ω, there are
α < β in c such that f(α) = f(β), β /∈ h(α) and for every ξ ε g(α), cξ(α) = dξ(β).

Proof of Lemma 1.2. Let us call a triple 〈A,B, u〉 a control triple if
(1) A ε [c]ω , B ε [A2]≤ω;
(2) u is a function with dom(u) ε [A]ω ;
(3) for every α ε dom(u), u(α) ε [A2 \B]<ω;
(4) if α 6= α′ in dom(u), then u(α) ∩ u(α′) = ∅.
Let 〈Aβ , Bβ, uβ〉β<c be a list of all control triples mentioning each triple c many

times.
Suppose now that ξ < λ and we want to define dξ(β) for some β < c. We are

going to distinguish among three cases.

Case 1. If cξ � Aβ ε Bβ , then let dξ(β) = cξ(β).

Case 2. If cξ � Aβ ε uβ(α) for some α ε dom(uβ), then note first that cξ � Aβ /∈
Bβ by (3), and that there is only one such α by (4). Then define dξ(β) = cξ(α).

Case 3. If neither Case 1 nor Case 2 holds, then set dξ(β) = 0.

The rest of the proof of Lemma 1.2 will be devoted to showing that the sequence
〈dξ〉ξ<λ of functions constructed above satisfies the requirements in the conclusion of
Lemma 1.2. To see this, take a g : c→ [λ]<ω, an f : c→ ω and an h : c→ [c]<ω. For
every α ε c, let eα ε Fn(λ, 2) be such that dom (eα) = g(α) and that eα(ξ) = cξ(α)
for every ξ ε g(α).

We will produce a pair α < β in c such that
(5) f(α) = f(β), β /∈ h(α) and for every ξ ε g(α), cξ(α) = dξ(β).

To do this, fix two countable elementary submodels M and N of H((22c

)+) such
that 〈cξ〉ξ<λ, 〈dξ〉ξ<λ, 〈eα〉α<c,g, f, h ε M and M ε N .

Let A = c ∩ N,B = {cξ � A : ξ ε λ ∩M} and let us pick a partial function
u : A→ [A2 \B]<ω with the following property:

(6) whenever v ε N is an infinite partial function v : c → [λ \M ]<ω and α 6=
α′ in dom(v) implies v(α) ∩ v(α′) = ∅, then there is an α ε dom(u) ∩ dom(v) such
that

u(α) = {cξ � A : ξ ε v(α)}.
To see that there is such a u, let 〈vj〉jεω list each v as in (6). Take α0, α1, . . . ,

αj , . . . ε A in such a way that αj ε dom(vj)∩N and i < j implies vi(αi)∩vj(αj) = ∅.
Then let dom(u) = {αj : j ε ω}, and set u(αj) = {cξ � A : ξ ε v(αj)} for every
j ε ω. We have to show that u satisfies (2), (3) and (4). It obviously satisfies (2).
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To see that (3) is satisfied, suppose indirectly that u(αj) ∩ B 6= ∅ for some j ε ω,
i.e. there are ξ ε vj(αj) ⊂ N and η ε λ ∩M ⊂ N such that cξ � A = cη � A. Then
N |= cξ = cη, so cξ = cη. Since 〈cξ〉ξ<λ is a one-to-one enumeration, it follows that
ξ = η, contradicting vj(αj) ⊂ λ \M . The proof that u satisfies (4) is similar.

Returning to finding α and β as required in (5), let us pick β < c to be such
that β > supA and 〈Aβ , Bβ, uβ〉 = 〈A,B, u〉. To find α, let E = g(β) ∩M and
e = eβ � E = eβ � (λ ∩M). Set n = f(β). Let us say that 〈eγ〉γεD (D ⊂ c) forms a
4-system with root e iff eγ extends e for every γ ε D, and dom(eγ)∩ dom(eδ) = E
for every γ 6= δ in D. Let us take a maximal D ⊂ f←({n}) such that 〈eγ〉γεD forms
a 4-system with root e. Since 〈eγ〉γεc, f, e ε M , we can assume that we have taken
such a D ε M . Then D is uncountable, or else adding β to D would contradict
maximality. Thus the set

H = {γ ε D : (dom(eγ) \E) ∩ (λ ∩M) = ∅} ε N

is uncountable. Let v : H → [λ \M ]<ω be defined by

v(γ) = dom(eγ) \E.

Then v ε N , and thus there is an α ε dom(u) ∩ dom(v) such that

u(α) = {cξ � A : ξ ε v(α)} .

This α will satisfy (5) with our β. Indeed, α ε D ⊂ f←({n}), so f(α) = n = f(β).
Since α, h ε N , it follows that h(α) ⊂ N . By β > supA =sup(c ∩N), we conclude
β /∈ h(α). Finally, let ξ ε g(α) = dom(eα). We will distinguish between two cases.

Case A. If ξ ε E, then cξ(α) = eα(ξ) = e(ξ) = eβ(ξ) = cξ(β) and by ξ ε E ⊂
λ ∩M we have cξ � Aβ = cξ � A ε B = Bβ . Thus by Case 1 of the definition of
dξ(β), dξ(β) = cξ(β) = cξ(α).

Case B. If ξ ε dom (eα) \E = dom v(α), then cξ � Aβ = cξ � A ε u(α) = uβ(α).
Thus by Case 2 of the definition of dξ(β), it follows that dξ(β) = cξ(α).

The rest of the proof of Theorem 1.1 is similar to the proof of Lemma 1 in [W1]
of M. E. Rudin and S. Watson.

The rest of the proof of Theorem 1.1. Let X = c × ω. Set, for every n ε ω,Xn =
c× {n} and Gn = c× (n+ 1). To define the topology on X , let us first define, for
every α ε c, s ε [λ]<ω and a ε [c]<ω , the set

F (α, s, a) = {β ε c : for every ξ ε s, dξ (β) = cξ(α)} \ a.

Note that for every α ε c,

Fα = {F (α, s, a) : s ε [λ]<ω , a ε [c]<ω}

is closed under finite intersections. Now, for x = 〈α, n〉 ε X , let

Nx =

{
{{x}} , if n = 0;

{{x} ∪ F × {n− 1} : F ε Fα} , if n ≥ 1.

Let us now declare a subset U of X to be open if and only if for every x ε U , there
is an N ε Nx such that N ⊂ U . Since each Nx is closed under finite intersections
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and ∩ Nx = {x} for every x ε X , this defines a T1 topology τ. Clearly, each Xn

is a discrete subspace of X (equipped with the topology τ), so X is a σ-relatively
discrete T1 space.

To see that X is hereditarily normal, note first that any two disjoint subsets
of the same level Xn = c × {n} can be separated by disjoint open sets. To see
this, we proceed by induction on n ε ω. Since X0 consists of isolated points, we
are done for n = 0. Suppose now that n ≥ 1, and we are done for n − 1. Let
A0, A1 be disjoint subsets of Xn. Take a ξ < λ such that cξ(α) = i, whenever
〈α, n〉 ε Ai (i ε 2). Set Bi = {〈β, n − 1〉 : dξ(β) = i}. Then for every i ε 2
and x ε Ai, Nx = {x} ∪ F (α, {ξ}, ∅) × {n − 1} ε Nx and Nx ⊂ Ai ∪ Bi. By our
inductive hypothesis, B0 and B1 can be put into disjoint open subsets V0 and V1

of Gn−1 = ∪k≤n−1Xk. Then A0 ∪ V0 and A1 ∪ V1 are disjoint open sets separating
A0 and A1.

To prove now that X is hereditarily normal, let H,K be subsets of X such that
H̄ ∩ K = H ∩ K̄ = ∅. We have to show that H and K can be separated by disjoint
open sets. By the standard shoestring argument, we can assume that H ⊂ Xn

for some n ε ω. By passing from K to K ∪ (Xn\H), we can also assume that
K ∩Xn ∪H = Xn.

Claim 1. If m ≤ n, then H and K ∩Xm can be put into disjoint open subsets.

We have already proved Claim 1 for m = n, so suppose m < n. Take disjoint
open subsets U and V of Gm such that U ⊃ Xm \ K̄ and V ⊃ Xm ∩ K̄. Then
U∗ = (X \ (Gm ∪ K̄)) ∪ U and V ∗ = V are disjoint open sets separating H and
K ∩Xm.

By Claim 1, there are disjoint open subsets WH ,WK of Gn such that WH ⊃ H
and WK ⊃ K ∩Gn. Then W ∗H = WH and W ∗K = (X \ (Gn ∪ H̄))∪WK are disjoint
open sets separating H and K.

Finally, let us start the proof that X is not countably metacompact by defining a
subset Y of c to be σ-decomposable if we can find an f : Y → ω and for every α ε Y ,
an Fα ε Fα in such a way that α 6= β and f(α) = f(β) implies that α /∈ Fβ and
β /∈ Fα. Clearly, every countable union of σ-decomposable sets is σ-decomposable
and by Lemma 1.2, c is not σ-decomposable. Hence, whenever c is the union of
countably many of its subsets, at least one of those subsets is not σ-decomposable.

Claim 2. If n ε ω and Y ⊂ c is not σ-decomposable, then Y1 = {α ε Y : 〈α, n +

1〉 ε Y × {n}} is not σ-decomposable.

To see that Claim 2 is true, let Y0 = Y \Y1. Since α ε Y0 implies that there is an
Fα ε Fα with Fα∩Y = ∅, Y0 is σ-decomposable (in fact, 1-decomposable). If Y1 were
now σ-decomposable, then Y = Y0 ∪ Y1 would be σ-decomposable, contradicting
our assumption.

Passing now to the proof that X is not countably metacompact, consider the
increasing open cover {Gm : m ε ω} of X . We are going to show that there is no
sequence of closed sets Fm ⊂ Gm in such a way that ∪mεωFm = X . Indeed, if there
were such a sequence 〈Fm〉mεω, then one of the sets Ym = {α ε c : 〈α, 0〉 ε Fm}
would not be σ-decomposable. By Claim 2, Fm ⊃ Ym × {0} would not be a subset
of Gm, contradiction.

Final Remarks. 1. It remains open whether there is a first countable Dowker
space in ZFC. The character of spaces similar to our space has to be large if we
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want to carry out the construction in ZFC. Indeed, let us say that X is a nonskip-
ping scattered space of height ω, if X = ∪nεωXn, the Xn are pairwise disjoint, each
Xn consists of isolated points of ∪j≥nXj, and whenever n ε ω, Y ⊂ ∪k≤nXn and

Y ∩ (∪j≥n+1Xj) 6= ∅, then Ȳ ∩ Xn+1 6= ∅. Note that our space is a nonskipping
scattered space of height ω. It is easy to see that regular, hereditarily collection-
wise Hausdorff, nonskipping scattered spaces of height ω are paracompact. Since
by Fleissner’s result [F], every normal space of character ≤ 2ω is collectionwise
Hausdorff in the constructible universe, we conclude that under V = L, there are
no hereditarily normal Dowker spaces of character ≤ 2ω which are nonskipping
scattered spaces of height ω.

2. On the other hand, there are consistent examples of spaces with small char-
acter similar to the space in this paper. P. deCaux’s Dowker space from ♣ is of
scattered height ω, and it has character ≤ c, because it is locally countable. It
is not necessarily hereditarily normal. A deCaux type space of M. E. Rudin [R4]
from ♦ is hereditarily normal, first countable and locally compact, but is neither of
scattered height ω nor σ-relatively discrete. Dennis Burke and the author observed
that an example of S. Shelah [S] can be modified to obtain a consistent example of
a locally countable Dowker space (thus of character ≤ c) which is both hereditarily
normal and is of scattered height ω.
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