EACH LOCALLY ONE-TO-ONE MAP FROM A CONTINUUM
ONTO A TREE-LIKE CONTINUUM IS A HOMEOMORPHISM

JO W. HEATH

(Communicated by James West)

Abstract. In 1977 T. Maćkowiak proved that each local homeomorphism from a continuum onto a tree-like continuum is a homeomorphism. Recently, J. Rogers proved that each locally one-to-one (not necessarily open) map from a hereditarily decomposable continuum onto a tree-like continuum is a homeomorphism, and this paper removes “hereditarily decomposable” from the hypothesis of Rogers’ theorem.

It is not easy for a nice function to map onto a tree-like continuum without being a homeomorphism. T. Maćkowiak’s classic result [3], proved in 1977, is that each local homeomorphism from a continuum onto a tree-like continuum is a homeomorphism. Local homeomorphisms are both open and locally one-to-one, and recently J. Rogers asked if “open” could be removed from the hypothesis of the Maćkowiak theorem. In [1] Rogers proved a special case, namely that if a locally one-to-one map that is not a homeomorphism is defined on a hereditarily decomposable continuum, then the image contains a continuum that is not unicoherent. Since all tree-like continua are hereditarily unicoherent, the image cannot be tree-like. These results come from the “complicated proof” found in [2] of Corollary 5.7 in [1]. We use the noun “map” to mean continuous function, and the term “continuum” to mean a connected, compact metric space.

The theorem to follow completes the task of removing “open” from the Maćkowiak theorem. The lemma that is proved first helps to organize the covers.

Definition. A finite collection of sets has a tree-indexing if its members can be labeled \(\{L_1, L_2, \ldots, L_m\} \) so that the \(L_i \) are distinct and for each \(j \) from 2 to \(m \), \(L_j \) intersects exactly one member of the set \(\{L_1, L_2, \ldots, L_{j-1}\} \).

Tree-cover lemma. A finite collection of open sets has a tree-indexing iff its nerve is a tree.

Proof. Suppose \(\{L_1, L_2, \ldots, L_m\} \) is a tree-indexing of a finite collection \(\mathcal{V} \) of open sets. Then \(\mathcal{V} \) is coherent since if \(\mathcal{V} = \mathcal{V}_1 \cup \mathcal{V}_2 \), two disjoint subcollections whose unions do not intersect, and if \(L_1 \in \mathcal{V}_1 \), then the element of \(\mathcal{V}_2 \) with the smallest label fails the definition of a tree-indexing. Since \(\mathcal{V} \) is coherent, its nerve is connected. Since no three elements in \(\mathcal{V} \) can intersect, its nerve is a one-dimensional graph. If the nerve of \(\mathcal{V} \) contains a simple closed curve, then the element of \(\mathcal{V} \) with the
largest label, that corresponds to some vertex in the simple closed curve, violates the tree-indexing definition. Therefore the nerve of \(\mathcal{V} \) is a tree. Now, by way of contradiction, let \(\mathcal{V} \) denote the smallest finite collection of open sets whose nerve is a tree but does not have a tree-indexing. Since the nerve of \(\mathcal{V} \) is connected, the collection \(\mathcal{V} \) must be coherent. Clearly, \(\mathcal{V} \) must have more than two elements. Since the nerve of \(\mathcal{V} \) has at least three vertices, the removal of an endpoint \(e \), and the arc that connects \(e \) to the rest of the tree, leaves a tree. By our assumption, this means that the collection \(\mathcal{V} \setminus \{ V(e) \} \), where \(V(e) \) denotes the open set in \(\mathcal{V} \) that corresponds to \(e \), has a tree-indexing \(\{ L_1, L_2, ..., L_m \} \). This generates a tree-indexing for \(\mathcal{V} \) by labeling \(V(e) \) as \(L_{m+1} \).

Theorem. Every locally one-to-one map from a continuum onto a tree-like continuum is a homeomorphism.

Proof. Suppose that \(h \) is a locally one-to-one map from a continuum \(X \) onto a tree-like continuum \(Y \). It is clear that \(h \) must be finite-to-one, and there is a positive number \(\epsilon \) such that if \(x \) and \(x' \) are points of \(X \) such that \(h(x) = h(x') \), then \(d(x, x') > 3\epsilon \). For each point \(y \) in \(Y \), there is an open set \(U(y) \) in \(Y \) containing \(y \) such that if \(h^{-1}(y) = \{ x_1, x_2, ..., x_n \} \), then \(h^{-1}(U(y)) \subseteq \bigcup_{i=1}^{n} N_{\epsilon}(x_i) \) in \(X \), where \(N_{\epsilon}(x_i) \) denotes the \(\epsilon \) neighborhood of \(x_i \) in \(X \). Now, let \(\mathcal{V} \) denote an open refinement of \(\{ U(y) \mid y \in Y \} \) that covers \(Y \) and whose nerve is a tree. By the tree-cover lemma, \(\mathcal{V} \) can be written \(\{ L_1, L_2, ..., L_m \} \), satisfying the definition of a tree-indexing. For each \(L_i \in \mathcal{V} \), let \(y_i \) denote a member of \(Y \) such that \(L_i \subseteq U(y_i) \). Index the elements of \(h^{-1}(y_i) = \{ x_1, x_2, ..., x_k \} \), and for \(j = 1, ..., k \), define \(W(i, j) = h^{-1}(L_i) \cap N_{\epsilon}(x_j) \), if this set is non-empty. Note that for each relevant \(i \) and \(j \), \(W(i, j) \) is an open set in \(X \) of diameter less than \(\epsilon \), and \(h \) is one-to-one on \(W(i, j) \). Now define \(W \) to be the set of these \(W(i, j) \)'s. Then \(W \) is an open covering of \(X \).

3-link fact. If \(W(i_1, j_1) \), \(W(i_2, j_2) \), and \(W(i_3, j_3) \) are distinct elements of \(W \) such that \(W(i_2, j_2) \) intersects each of the other two, then the integers \(\{ i_1, i_2, i_3 \} \) are distinct.

Let \(z_1 \) denote a point of \(W(i_1, j_1) \cap W(i_2, j_2) \), let \(z_3 \) denote a point of \(W(i_3, j_3) \cap W(i_2, j_2) \), and note that \(d(z_1, z_3) < \epsilon \). First, suppose that \(i_1 = i_2 \). By construction, \(W(i_1, j_1) \subseteq N_{\epsilon}(x_{j_1}) \) and \(W(i_2, j_2) \subseteq N_{\epsilon}(x_{j_2}) \), where \(h(x_{j_1}) = h(x_{j_2}) = y_i \). But \(z_1 \in N_{\epsilon}(x_{j_1}) \cap N_{\epsilon}(x_{j_2}) \) implies that \(d(x_{j_1}, x_{j_2}) < 2\epsilon \), that is, \(j_1 = j_2 \). This is contrary to the fact that the \(W \)'s are distinct. A similar contradiction occurs if \(i_3 = i_2 \). Secondly, suppose that \(i_1 = i_3 \). Again, by construction, \(z_1 \in W(i_1, j_1) \subseteq N_{\epsilon}(x_{j_1}) \) and \(z_3 \in W(i_1, j_3) \subseteq N_{\epsilon}(x_{j_3}) \), where \(h(x_{j_1}) = h(x_{j_3}) = y_i \). Thus \(d(x_{j_1}, x_{j_3}) > 3\epsilon \) if \(j_1 \neq j_3 \). But this is contrary to the fact that each of the following numbers is less than \(\epsilon \) : \(d(x_{j_1}, z_1) \), \(d(z_1, z_3) \), and \(d(x_{j_3}, z_3) \). This contradiction completes the proof of the 3-link fact.

Now, back to the proof of the theorem. If \(h \) is not a homeomorphism, then \(h \) is not one-to-one, so there exist two points \(x_1 \) and \(x_2 \) such that \(h(x_1) = h(x_2) \). So \(x_1 \in W(i, j) \) and \(x_2 \in W(i, k) \) for some \(i \) and \(j \neq k \), and there is a chain of elements from \(W \) with first link \(W(i, j) \) and last link \(W(i, k) \). Let \(C = \{ W(k_1, n_1), W(k_2, n_2), ..., W(k_m, n_m) \} \) denote a chain in \(W \) of shortest length such that \(k_1 = k_m \). By the 3-link fact, \(m > 3 \). The indexing on \(C \) is understood to be the usual chain indexing, where the links are distinct and \(W(k_i, n_i) \) intersects \(W(k_j, n_j) \) if \(|i - j| < 1 \). Let \(k_j \) be the smallest integer in \(\{ k_1, k_2, ..., k_m \} \), where we use \(j = 1 \) if the smallest is \(k_1 = k_m \). Then \(k_{j+1} > k_j \) and \(k_{j+2} > k_{j+1} \). To see this second inequality, note
that in \mathcal{V}, $L_{k_{j+1}}$ intersects L_{k_j} since $W(k_{j+1}, n_{j+1})$ intersects $W(k_j, n_j)$, so L_{k_j} is the only element of \mathcal{V} with lower subscript that $L_{k_{j+1}}$ intersects. This means that, since $L_{k_{j+1}}$ also intersects $L_{k_{j+2}}$, the subscript k_{j+2} must be greater than k_{j+1}. If we continue in this way we can establish the fact that $k_j < k_{j+1} < k_{j+2} < \ldots < k_m = k_1 < k_2 < \ldots < k_{j-1}$. Note that when we “turn the corner” we use the fact that $k_2 \neq k_{m-1}$, which follows since $m > 3$. The final contradiction is that the last link $L_{k_{j-1}}$ intersects both of the lower indexed links $L_{k_{j-2}}$ and L_{k_j}.

\[\square \]

REFERENCES

DEPARTMENT OF MATHEMATICS, AUBURN UNIVERSITY, ALABAMA 36849-5310

E-mail address: heathjw@mail.auburn.edu