On the syzygies of flag manifolds

Author:
Laurent Manivel

Journal:
Proc. Amer. Math. Soc. **124** (1996), 2293-2299

MSC (1991):
Primary 14M15; Secondary 13D02, 14F17

DOI:
https://doi.org/10.1090/S0002-9939-96-03775-6

MathSciNet review:
1372039

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that on a complex flag manifold, a very ample line bundle which is a -th power has property in the sense of Green and Lazarsfeld. This is a partial answer to a problem raised by Fulton.

**[A-B-W]**K. Akin, D. Buchsbaum, and J. Weyman,*Schur functors and Schur complexes*, Adv. in Math.**44**(1982), 237--278. MR**84c:20021****[B-E-L]**A. Bertram, L. Ein, and R. Lazarsfeld,*Vanishing theorems, a theorem of Severi, and the equations defining projective varieties*, J. Amer. Math. Soc.**4**(1991), 587--602. MR**92g:14014****[De]**M. Demazure,*A very simple proof of Bott's theorem*, Invent. Math.**33**(1976), 271--272. MR**54:2670****[E-L]**L. Ein and R. Lazarsfeld,*Syzygies and Koszul cohomology of smooth projective varieties of arbitrary dimension*, Invent. Math.**111**(1993), 51--67. MR**93m:13006****[Gr]**M. Green,*Koszul cohomology and the geometry of projective varieties*, J. Diff. Geom.**19**(1984), 125--171. MR**85e:14022****[Ke]**G. Kempf,*The projective coordinate ring of abelian varieties*, Algebraic Analysis, Geometry and Number Theory (J. I. Igusa, ed.), Johns Hopkins Press, Baltimore, 1989.**[La]**A. Lascoux,*Syzygies des variétés déterminantales*, Adv. in Math.**30**(1978), 202--237. MR**80j:14043****[McD]**I. G. Macdonald,*Symmetric functions and Hall polynomials*, Clarendon Press, 1979. MR**84g:05003****[P-W]**P. Pragacz and J. Weyman,*Ideals generated by Pfaffians*, J. Algebra**61**(1979), 189--198.**[W]**H. Weyl,*The classical groups*, Princeton University Press, 1939. MR**1:42c**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
14M15,
13D02,
14F17

Retrieve articles in all journals with MSC (1991): 14M15, 13D02, 14F17

Additional Information

**Laurent Manivel**

Affiliation:
Institut Fourier, Université de Grenoble I, 38402 Saint Martin d’Hères, France

Email:
laurent.manivel@ujf-grenoble.fr

DOI:
https://doi.org/10.1090/S0002-9939-96-03775-6

Keywords:
Syzygies,
flag manifolds,
Schur functors,
Bott's theorem

Received by editor(s):
November 28, 1994

Communicated by:
Eric M. Friedlander

Article copyright:
© Copyright 1996
American Mathematical Society