Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The local cohomology modules of Matlis reflexive modules are almost cofinite


Authors: Richard Belshoff, Susan Palmer Slattery and Cameron Wickham
Journal: Proc. Amer. Math. Soc. 124 (1996), 2649-2654
MSC (1991): Primary 13D45, 13C99, 13C05
DOI: https://doi.org/10.1090/S0002-9939-96-03326-6
MathSciNet review: 1326995
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if $M$ and $N$ are Matlis reflexive modules over a complete Gorenstein local domain $R$ and $I$ is an ideal of $R$ such that the dimension of $R/I$ is one, then the modules $\mathrm {Ext}^{i}_{R}(N,\mathrm {H}^{j}_{I}(M))$ are Matlis reflexive for all $i$ and $j$ if $\mathrm {Supp}(N) \subseteq V(I)$. It follows that the Bass numbers of $\mathrm {H}^{j}_{I}(M)$ are finite. If $R$ is not a domain, then the same results hold for $M=R$.


References [Enhancements On Off] (What's this?)

  • [B] H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28. MR 27:3669
  • [Be] R. Belshoff, Some change of ring theorems for Matlis reflexive modules, Comm. Algebra 22 (1994), 3545-3552. CMP 94:13
  • [D] D. Delfino, On the cofiniteness of local cohomology modules, Math. Proc. Camb. Phil. Soc. 115 (1994), 79-84. MR 94m:13023
  • [D-M] D. Delfino and T. Marley, Cofinite Modules and Local Cohomology, preprint.
  • [E] E. Enochs, Flat covers and flat cotorsion modules, Proc. Amer. Math. Soc. (2) 92 (1984), 179-184. MR 85j:13016
  • [G] A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefshcetz locaux et globaux. S.G.A. II. North Holland, 1968. MR 57:16294
  • [H1] R. Hartshorne, ``Residues and Duality,'' Lecture Notes in Mathematics, No. 20, Springer-Verlag, 1966. MR 36:5145
  • [H2] R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1970), 145-164. MR 41:1750
  • [H-K] C. Huneke and J. Koh, Cofiniteness and vanishing of local cohomology modules, Math. Proc. Camb. Phil. Soc. 110 (1991), 421-429. MR 92g:13021
  • [H-S] C. Huneke and R. Sharp, Bass numbers of local cohomology modules, Trans. Amer. Math. Soc. 339 (1993), 765-779. MR 93m:13008
  • [L] G. Lyubeznik, Finiteness properties of local cohomology modules, Invent. Math. 113 (1993), 41-55. MR 94e:13032
  • [St] J. R. Strooker, Homological Questions in Local Algebra, London Mathematical Society Lecture Notes 145, Cambridge University Press, Cambridge, 1990. MR 91m:13013

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 13D45, 13C99, 13C05

Retrieve articles in all journals with MSC (1991): 13D45, 13C99, 13C05


Additional Information

Richard Belshoff
Affiliation: Department of Mathematics, Southwest Missouri State University, Springfield, Missouri 65804
Email: rgb865f@cnas.smsu.edu

Susan Palmer Slattery
Address at time of publication: S. P. Slattery: Department of Mathematics, Alabama State University, Montgomery, Alabama 36101
Email: slattery@asu.alasu.edu

Cameron Wickham
Affiliation: Department of Mathematics, Southwest Missouri State University, Springfield, Missouri 65804
Email: cgw121f@cnas.smsu.edu

DOI: https://doi.org/10.1090/S0002-9939-96-03326-6
Keywords: Matlis reflexive module, local cohomology module, Gorenstein ring, Bass number
Received by editor(s): October 24, 1994
Received by editor(s) in revised form: March 22, 1995
Communicated by: Wolmer V. Vasconcelos
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society