Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Polynomially bounded operators and Ext groups


Author: Sarah H. Ferguson
Journal: Proc. Amer. Math. Soc. 124 (1996), 2779-2785
MSC (1991): Primary 47B38; Secondary 18G15
MathSciNet review: 1327011
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we consider the Ext functor in the category
of Hilbert modules over the disk algebra. We characterize the group
$\operatorname {Ext}_{A(D)}(K,H)$ as a quotient of operators and explicitly calculate
$\operatorname {Ext}_{A(D)}(K,% H^{2})$, where $K$ is a weighted Hardy space. We then use our results to give a simple proof of a result due to Bourgain.


References [Enhancements On Off] (What's this?)

  • 1. J. Bourgain, On the similarity problem for polynomially bounded operators on Hilbert space, Israel J. Math. 54 (1986), no. 2, 227–241. MR 852479, 10.1007/BF02764943
  • 2. J. F. Carlson and D. N. Clark, Cohomology and extensions of Hilbert modules, J.Functional Analysis 128 (1995).
  • 3. J. F. Carlson, D. N. Clark, C. Foias and J. P. Williams, Projective Hilbert A(D)-Modules, New York J. Math. 1 (1994), 26--38. CMP 94:15
  • 4. Ronald G. Douglas and Vern I. Paulsen, Hilbert modules over function algebras, Pitman Research Notes in Mathematics Series, vol. 217, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 1028546
  • 5. C. Foias and J. P. Williams, On a class of polynomially bounded operators, preprint (1974).
  • 6. Vladimir V. Peller, Estimates of functions of power bounded operators on Hilbert spaces, J. Operator Theory 7 (1982), no. 2, 341–372. MR 658618
  • 7. Allen L. Shields, Weighted shift operators and analytic function theory, Topics in operator theory, Amer. Math. Soc., Providence, R.I., 1974, pp. 49–128. Math. Surveys, No. 13. MR 0361899
  • 8. Ke He Zhu, Operator theory in function spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 139, Marcel Dekker, Inc., New York, 1990. MR 1074007

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 47B38, 18G15

Retrieve articles in all journals with MSC (1991): 47B38, 18G15


Additional Information

Sarah H. Ferguson
Email: sarah@math.uh.edu

DOI: https://doi.org/10.1090/S0002-9939-96-03340-0
Keywords: Polynomially bounded operator, Ext groups, reproducing kernel Hilbert space, weighted Hardy space, BMOA
Received by editor(s): March 13, 1995
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1996 American Mathematical Society