Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Mean theoretic approach
to the grand Furuta inequality

Authors: Masatoshi Fujii and Eizaburo Kamei
Journal: Proc. Amer. Math. Soc. 124 (1996), 2751-2756
MSC (1991): Primary 47A63, 47B15
MathSciNet review: 1327013
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Very recently, Furuta obtained the grand Furuta inequality which is a parameteric formula interpolating the Furuta inequality and the Ando-Hiai inequality as follows : If $A \ge B \ge 0$ and $A$ is invertible, then for each $t \in [0,1]$,

\begin{equation*}F_{p,t}(A,B,r,s) = A^{-r/2}\{A^{r/2}(A^{-t/2}B^{p}A^{-t/2})^{s}A ^{r/2}\}^{\frac {1-t+r}{(p-t)s+r}}A^{-r/2} \end{equation*}

is a decreasing function of both $r$ and $s$ for all $r \ge t, ~p \ge 1$ and $s \ge 1$. In this note, we employ a mean theoretic approach to the grand Furuta inequality. Consequently we propose a basic inequality, by which we present a simple proof of the grand Furuta inequality.

References [Enhancements On Off] (What's this?)

  • 1. T.Ando, On some operator inequalities, Math. Ann., 279 (1987), 157--159. MR 89c:47019
  • 2. T.Ando and F.Hiai, Log-majorization and complementary Golden-Thompson type inequalities, Linear Alg. and its Appl., 197/198 (1994), 113--131. MR 95d:15006
  • 3. M.Fujii, Furuta's inequality and its mean theoretic approach, J. Operator theory, 23 (1990), 67--72. MR 91g:47012
  • 4. M.Fujii,T.Furuta and E.Kamei, Furuta's inequality and its application to Ando's Theorem, Linear Alg. and its Appl., 149 (1991), 91--96. MR 92e:47023
  • 5. M.Fujii, T.Furuta and E.Kamei, Operator functions associated with Furuta's inequality, Linear Alg. and its Appl., 179 (1993), 161--169. MR 93j:47026
  • 6. M.Fujii and E.Kamei, Furuta's inequality and a generalization of Ando's Theorem, Proc. Amer. Math. Soc., 115 (1992), 409--413. MR 92i:47108
  • 7. T.Furuta, $A \ge B \ge 0$ assures $(B^{r}A^{p}B^{r})^{1/q} \ge B^{(p+2r)/q}$ for $r \ge 0, p \ge 0, q \ge 1$ with $(1+2r)q \ge p+2r$, Proc. Amer. Math. Soc., 101 (1987), 85-88. MR 89b:47028
  • 8. T.Furuta, Elementary proof of an order preserving inequality, Proc. Japan Acad., 65 (1989), 126. MR 90g:47029
  • 9. T.Furuta, A proof via operator means of an order preserving inequality, Linear Alg. and its Appl., 113 (1989), 12--130. MR 89k:47023
  • 10. T.Furuta, Two operator functions with monotone property, Proc. Amer. Math. Soc., 111 (1991), 511--516. MR 91f:47023
  • 11. T.Furuta, Application of an order preserving inequalities, Operator theory : Advances and Applications, Birkhouser Verlag, Basel, 59 (1992), 180--190. MR 94m:47033
  • 12. T.Furuta, Extension of the Furuta inequality and Ando-Hiai log-majorization, Linear Alg. and its Appl., 219 (1995), 139--155.
  • 13. E.Heinz, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann., 123 (1951), 415- -438. MR 13:471f
  • 14. E.Kamei, Furuta's inequality via operator means, Math. Japon., 33 (1988), 737--739. MR 90c:47037
  • 15. E.Kamei, A satellite to Furuta's inequality, Math. Japon., 33 (1988), 883--886. MR 89m:47011
  • 16. F.Kubo and T.Ando, Means of positive linear operators, Math. Ann., 246 (1980), 205--224. MR 84d:47028
  • 17. K.Löwner, Über monotone Matrixfunktionen, Math. Z., 38 (1934), 177--216.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 47A63, 47B15

Retrieve articles in all journals with MSC (1991): 47A63, 47B15

Additional Information

Masatoshi Fujii
Affiliation: Department of Mathematics, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582, Japan

Eizaburo Kamei
Affiliation: Momodani Senior Highschool, Ikuno, Osaka 544, Japan

Keywords: Positive operators, L\"{o}wner-Heinz inequality, Furuta inequality, Ando-Hiai inequality, grand Furuta inequality
Received by editor(s): November 28, 1994
Received by editor(s) in revised form: March 6, 1995
Dedicated: Dedicated to Professor Tsuyoshi Ando, the originator of the theory of operator means, on his retirement from Hokkaido University
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society