MEAN THEORETIC APPROACH
TO THE GRAND FURUTA INEQUALITY

MASATOSHI FUJII AND EIZABURO KAMEI

(Communicated by Palle E. T. Jorgensen)

Dedicated to Professor Tsuyoshi Ando, the originator of the theory of operator means, on his retirement from Hokkaido University

Abstract. Very recently, Furuta obtained the grand Furuta inequality which is a parametric formula interpolating the Furuta inequality and the Ando-Hiai inequality as follows: If $A \geq B \geq 0$ and A is invertible, then for each $t \in [0,1],$

$$F_{p,t}(A, B, r, s) = A^{-r/2}(A^{-1/2}B A^{-1/2})^r A^{-r/2}$$

is a decreasing function of both r and s for all $r \geq t$, $p \geq 1$ and $s \geq 1$. In this note, we employ a mean theoretic approach to the grand Furuta inequality. Consequently we propose a basic inequality, by which we present a simple proof of the grand Furuta inequality.

1. Introduction

Throughout this note, we consider bounded linear operators acting on a Hilbert space, simply operators. An operator A is positive if $(A x, x) \geq 0$ for all $x \in H$. The L"owner-Heinz inequality says that the function $t \rightarrow t^\alpha$ on $[0,\infty)$ operator monotone for $0 \leq \alpha \leq 1$, i.e.,

$$A \geq B \geq 0 \quad \text{implies} \quad A^\alpha \geq B^\alpha$$

(cf. [13] and [15]). Furuta [7] gave it an ingenious extension which is called the Furuta inequality: If $A \geq B \geq 0$, then

$$(A^r B A^r)^{1/q} \geq (A^p B A^p)^{1/q}$$

holds for $r \geq 0$, $p \geq 0$ and $q \geq 1$ with $(1 + 2r)q \geq p + 2r$; see [8] for an elementary proof.

Recently Ando and Hiai [2] discussed the log-majorization for positive operators and obtained the following fundamental inequality [2, Theorem 3.5], which is equivalent to their main log-majorization theorem [2, Theorem 2.1]. If $A \geq B \geq 0$ and A is invertible, then the following holds for $p, r \geq 1:$$$

A^r \geq \{A^{r/2}(A^{-1/2}B A^{-1/2})^r A^{-r/2}\}^{1/p}.$$
Very recently, Furuta [12] obtained a parameteric formula interpolating the Furuta inequality (2) and the Ando-Hiai inequality (3) in the following manner:

The grand Furuta inequality ([12]). If \(A \geq B \geq 0 \) and \(A \) is invertible, then for each \(t \in [0, 1] \),

\[
F_{p,t}(A, B, r, s) = A^{-r/2} \left\{ A^{r/2} (A^{-t/2} B^p A^{-t/2})^s A^{r/2} \right\}^{ \frac{1-t}{p-t+s-r}} A^{-r/2}
\]

is a decreasing function of both \(r \) and \(s \) for all \(r \geq t \), \(p \geq 1 \) and \(s \geq 1 \).

In particular, the inequality

\[
A^{1-t} = F_{p,t}(A, A, r, s) \geq F_{p,t}(A, B, r, s)
\]

holds for \(r \geq t \), \(p \geq 1 \) and \(s \geq 1 \).

As a matter of fact, (2) and (3) appear in the grand Furuta inequality as the extremal cases \(t = 0 \) and \(t = 1 \) with \(r = s \) respectively. Therefore we call it the grand Furuta inequality. We note that the original proof in [12] is quite elementary but somewhat technical.

In this note, we employ a mean theoretic approach to the grand Furuta inequality as has been done for the Furuta inequality (see [3], [4], [5], [6], [9], [14], [15]). Thus we propose a basic inequality, by which we present a simple proof of the grand Furuta inequality.

2. Means of operators

The theory of operator means was established by Kubo and Ando [16], whose heart is the correspondence between operator monotone functions \(f \) and means \(m \) given by

\[
f(t) = 1 m t \quad (t > 0).
\]

In connection with the Löwner-Heinz inequality (1), they exhibit means \(\sharp_s \) for \(0 \leq s \leq 1 \) such that \(1 \sharp_s t = t^s \) \((t > 0)\), more precisely

\[
A \sharp_s B = A^{1/2}(A^{-1/2} B A^{-1/2})^s A^{1/2}
\]

for positive invertible operators \(A \) and \(B \).

In [10], Furuta proved the monotonicity of the function

\[
F(p) = (B^p A^p B^p)^{ \frac{r+2p}{p+2r} } \quad \text{for} \quad p \geq 1
\]

associated with his inequality under the assumption \(A \geq B \geq 0 \) and \(r \geq 0 \). Noting that the monotonicity of \(F(p) \) can be rephrased in terms of the function

\[
M(p, r) = B^{-2r} \sharp_{ \frac{r+2p}{p+2r} } A^p,
\]

we showed that \(M(p, r) \) is an increasing function of both \(p \) and \(r \) for all \(p \geq 1 \) and \(r \geq 0 \) [4, Theorem 1]; see Lemma 5 below. Moreover, we pointed out that its modification includes Ando’s theorem on the geometric mean in [1].

We now rewrite (4) in a mean theoretic form, using the same technique that we used to rewrite (7) as (8). For the sake of convenience, we define \(\sharp_s \) for \(s \in \mathbb{R} \) as in [12] as an extension of \(\sharp_s \) for \(0 \leq s \leq 1 \),

\[
A \sharp_s B = A^{1/2}(A^{-1/2} B A^{-1/2})^s A^{1/2}
\]

(6')
for positive invertible operators A and B. For given $A \geq B \geq 0$, $p \geq 1$ and $t \in [0, 1]$, we let

$$F(r, s) = A^{-r+t} \left[\frac{t}{t-r} \right]^{s-1} (A^t \sharp_s B^p)$$

for $r \geq t$ and $s \geq 1$. It is easily checked that $F(r, s) = A^{1/2} F_{p,t}(A, B, r, s) A^{1/2}$ and so the monotonicity of $F_{p,t}(A, B, r, s)$ in (4) is equivalent to that of $F(r, s)$. Similarly, (5) can be rewritten in the form

$$F(r, s) \leq A \quad \text{for} \quad r \geq t \quad \text{and} \quad s \geq 1$$

if $A \geq B \geq 0$ and A is invertible.

Concluding this section, we note that \sharp_s is multiplicative in the sense that

$$A \sharp_s B = A \sharp_s (A \sharp_s B)$$

for all a and b.

3. The grand Furuta inequality

We begin by stating two simple lemmas by Furuta in [10] and [12]. For the sake of convenience, we give them short proofs.

Lemma 0 ([10]). For positive operators A and B,

$$(ABA)^s = AB^{1/2} (B^{1/2} A^2 B^{1/2})^{s-1} B^{1/2} A$$

holds for $s \geq 1$.

Proof. Let $AB^{1/2} = UH$ be the polar decomposition of $AB^{1/2}$. Then we have for $s \geq 0$

$$(ABA)^{1+s} = (UH^2 U^*)^{1+s} = UH^{2+2s} U^*$$

$$= UHH^{2s} HU^* = AB^{1/2} (B^{1/2} A^2 B^{1/2})^s B^{1/2} A.$$

Lemma 1 ([12]). If $A \geq B \geq 0$ and A is invertible, then

$$A^{t} \sharp_s B^p \leq B^{(p-t)s+t}$$

for $p \geq 1$, $1 \leq s \leq 2$ and $0 \leq t \leq 1$.

Proof. It follows from (1) that $A^{-t} \leq B^{-t}$ and moreover

$$A^{t} \sharp_s B^p = A^{t/2} (A^{-t/2} B^p A^{-t/2})^s A^{t/2}$$

$$= A^{t/2} A^{-t/2} B^{p/2} (B^{p/2} A^{-t} B^{p/2})^{s-1} B^{p/2} A^{-t/2} A^{t/2} \quad \text{by Lemma 0}$$

$$\leq B^{p/2} (B^{p/2} B^{-t} B^{p/2})^{s-1} B^{p/2}$$

$$= B^{(p-t)s+t}.$$

We use Lemma 1 to prove the following basic inequality which will work well in a proof of the grand Furuta inequality.

Theorem 2. If $A \geq B \geq 0$ and A is invertible, then

$$(A^{t} \sharp_s B^p)^{1/(s(p-t)+t)} \leq B$$

for $p \geq 1$, $s \geq 1$ and $0 \leq t \leq 1$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. It suffices to show that
\[(A^t \zeta_{2s} B^p)^{1/(2^k s(p-t)+t)} \leq B\]
for \(1 \leq s \leq 2\) and \(k = 1, 2, \ldots\). Lemma 1 says that (12) holds for \(k = 0\). So we put
\(p_1 = s(p-t) + t\), \(B_1 = (A^t \zeta_{s} B^p)^{1/p_1}\) and inductively
\[p_{k+1} = 2^k s(p-t) + t\quad \text{and} \quad B_{k+1} = (A^t \zeta_{2s} B^p)^{1/p_{k+1}}\]
for \(k = 1, 2, \ldots\). Then we have \(p_{k+1} = 2(p_k - t) + t\) and by (11)
\[B_{k+1} = (A^t \zeta_{2} B_{k}^p)^{1/p_{k+1}} = (A^t \zeta_{2k-1} B^p)^{1/p_{k+1}}\]
for \(k = 1, 2, \ldots\).

It therefore suffices to prove that \(B_{k+1} \leq B_k\). For a fixed \(k\), we can assume that \(B_k \leq A\) because \(B_1 \leq B \leq A\). Hence we apply Lemma 1 to \(B_k \leq A\), \(p = p_k\) and \(s = 2\). It implies that
\[(A^t \zeta_{2} B_k^p)^{1/(2^k p_k - t)} \leq B_k\]
Finally, since the left-hand side of this is just \(B_{k+1}\) by the above remark, we obtain the conclusion \(B_{k+1} \leq B_k\).

The second tool is a special case in the Furuta inequality (2).

Lemma 3. If \(A \geq B \geq 0\), then
\[A \geq (A^{b/2} B^{p} A^{b/2})^{1/(p+b)}\]
for \(p \geq 1\) and \(b \geq 0\).

Proof. We take \(r = b/2\) and \(q = p + b\) in (2). Since \(p, q\) and \(r\) satisfy the condition which ensures (2), we have the desired inequality.

Based on Theorem 2 and Lemma 3, we give a simple proof of the statement that
\(F(r, s)\) is a decreasing function of \(r\). The proof we give is similar to that of [4, Theorem 1].

Lemma 4. If \(A \geq B \geq 0\), then \(F(r, s)\) is a decreasing function of \(r\) for all \(r \geq t\).

Proof. First of all, we put \(B_1 = (A^t \zeta_{s} B^p)^{1/(p-s+t)}\) as in Theorem 2 and \((s) = \frac{1-r+s}{(p-t)s+t}\) for given \(s \geq 1\), \(p\), \(r\) and \(t\). Since \(B_1 \leq B \leq A\) by Theorem 2, Lemma 3 implies that
\[D = (A^{(r-t+d)/2} B_1^{(p-t+s+t)} A^{(r-t+d)/2})^{1/(p-t)s+r+d} \leq A,\]
so that \(D^d \leq A^d\) by (1) for \(0 < d < 1\). Therefore we have
\[F(r, s) = A^{-r+t} \zeta_{(s)} B_1^{(p-t)s+t} A^{-t} \zeta_{(s)} B_1^{(p-t)s+t} A^{(r-d-t)/2} D^d B_1^{(p-t)s+t} A^{(r-d-t)/2} A^{(r-d-t)/2} A^{-t} \zeta_{(s)} B_1^{(p-t)s+t} A^{(r-d-t)/2} \]
\[= A^{-r-d-t/2} D^d B_1^{(p-t)s+t} A^{(r-d-t)/2} A^{(r-d-t)/2} A^{(r-d-t)/2} D^d B_1^{(p-t)s+t} A^{(r-d-t)/2} A^{-t} \zeta_{(s)} B_1^{(p-t)s+t} A^{(r-d-t)/2} \]
\[= A^{-r-d-t/2} D^d B_1^{(p-t)s+t} A^{(r-d-t)/2} A^{-t} \zeta_{(s)} B_1^{(p-t)s+t} A^{(r-d-t)/2} \]
so the proof is complete.
To prove that $F(r, s)$ is a decreasing function of s, we need the following result equivalent to [4, Theorem 3]; cf. [11].

Lemma 5. If $A \geq B \geq 0$ and $\gamma \geq 0$ is given, then the operator function
\[f(\alpha, \beta) = A^{-\alpha} \varphi_{\frac{\alpha + \gamma}{\beta + \gamma}}^B \]
is a decreasing function of both α and β for all $\alpha \geq 0$ and $\beta \geq \gamma$.

Proof. In [4, Theorem 3], we showed that if $C \geq D \geq 0$ and $\gamma \geq 0$ is given, then
\[g(\alpha, \beta) = D^{-\alpha} \varphi_{\frac{\alpha + \gamma}{\beta + \gamma}}^C \]
is an increasing function of both α and β for all $\alpha \geq 0$ and $\beta \geq \gamma$. Since $B^{-1} \geq A^{-1} \geq 0$, it implies that
\[h(\alpha, \beta) = (A^{-1})^{-\alpha} \varphi_{\frac{\alpha + \gamma}{\beta + \gamma}}^{(B^{-1})^\beta} = A^\alpha \varphi_{\frac{\alpha + \gamma}{\beta + \gamma}}^{B^{-\beta}} \]
is also an increasing function of both α and β for all $\alpha \geq 0$ and $\beta \geq \gamma$. Taking the inverse, we obtain that
\[f(\alpha, \beta) = A^{-\alpha} \varphi_{\frac{\alpha + \gamma}{\beta + \gamma}}^B = (A^\alpha \varphi_{\frac{\alpha + \gamma}{\beta + \gamma}}^{B^{-\beta}})^{-1} = (h(\alpha, \beta))^{-1} \]
is a decreasing function of both α and β for all $\alpha \geq 0$ and $\beta \geq \gamma$, as required.

Lemma 6. If $A \geq B \geq 0$, then $F(r, s)$ is a decreasing function of s for all $s \geq 1$.

Proof. Since $B_1 \leq A$ by Theorem 2, we can apply Lemma 1 to B_1 and A. Namely we have, for $1 \leq s_1 \leq 2$
\[A^t \varphi_{s_1} B_1^{p_1} \leq B_1^{(p_1-\ell)t} \]
for $p_1 \geq 1$. Taking $p_1 = (p - t)s + t \geq 1$ in particular, we have
\[A^t \varphi_{s_1} B_1^{(p-t)s_1+t} \leq B_1^{(p-t)s_1+t}. \]
On the other hand, since the left-hand side above is of the form
\[A^t \varphi_{s_1} B_1^{(p-t)s_1+t} = A^t \varphi_{s_1} (A^t \varphi_{s} B^p) = A^t \varphi_{ss_1} B^p, \]
it follows that
\[A^t \varphi_{ss_1} B^p \leq B_1^{(p-t)s_1+t}. \]
Hence the monotonicity of operator means implies that
\[A^{-r+t} \varphi_{\frac{(p-t)s_1+t}{(p-t)s_1+1+t}} (A^t \varphi_{ss_1} B^p) \leq A^{-r+t} \varphi_{\frac{(p-t)s_1+t}{(p-t)s_1+1+t}} B_1^{(p-t)s_1+t}. \]
Now we apply Lemma 5 to $A \geq B_1$ for $\alpha = r - t, \beta = (p - t)s_1 + t$ and $\gamma = (p - t)s + t$. Then $\gamma \leq \beta$ by $1 \leq s_1$. That is, we have
\[A^{-r+t} \varphi_{\frac{(p-t)s_1+t}{(p-t)s_1+1+t}} B_1^{(p-t)s_1+t} \leq B_1^{(p-t)s_1+t} = A^t \varphi_{s} B^p. \]
Combining (13) with (14), we obtain that
\[A^{-r+t} \varphi_{\frac{(p-t)s_1+t}{(p-t)s_1+1+t}} (A^t \varphi_{ss_1} B^p) \leq A^t \varphi_{s} B^p. \]
Finally it implies that
\[F(r, ss_1) = A^{-r+t} (A_{ss_1}^{1-t} B^p) \]
\[= A^{-r+t} (A^{1-t} B^p) \]
\[\leq A^{-r+t} (A^{1} B^p) \]
\[= F(r, s), \]
so the proof is complete.

Consequently the grand Furuta inequality is proved by Lemmas 4 and 6, in the form of (9).

ACKNOWLEDGEMENT

The authors would like to express their hearty thanks to Professor T. Furuta for his fruitful and critical discussion and the referee for his warm and kind suggestions.

REFERENCES

7. T. Furuta, A ≥ B ≥ 0 assures \((B^{(1+2r)/q} A B^r)^{1/q} \geq B^{(p+2r)/q} \) for \(r \geq 0, p \geq 0, q \geq 1 \) with \(1 + 2r/q \geq p + 2r \), Proc. Amer. Math. Soc., 101 (1987), 85–88. MR 89b:47028

Department of Mathematics, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582, Japan
E-mail address: mfuji@cc.osaka-kyoiku.ac.jp

Momodani Senior Highschool, Ikuno, Osaka 544, Japan