Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Weak-type endpoint bounds for Riesz means


Author: Terence Tao
Journal: Proc. Amer. Math. Soc. 124 (1996), 2797-2805
MSC (1991): Primary 42B15
DOI: https://doi.org/10.1090/S0002-9939-96-03371-0
MathSciNet review: 1327048
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We use $L^2$ restriction theory to prove optimal weak-type bounds of Bochner-Riesz multipliers and Riesz means of elliptic pseudo-differential operators on compact manifolds, for $p \leq 2(n+1)/(n+3)$.


References [Enhancements On Off] (What's this?)

  • 1. J. Bourgain, Besicovitch-type maximal operators and applications to Fourier analysis, Geom. and Funct. Anal. 22 (1991), 147--187. MR 92g:42010
  • 2. L. Carleson and P. Sjölin, Oscillatory integrals and a multiplier problem for the disc, Studia Math. 44 (1972): 287--299. MR 50:14052
  • 3. M. Christ, On almost-everywhere convergence of Bochner-Riesz means in higher dimensions, Proc. Amer. Math. Soc. 95 (1985): 16--20. MR 87c:42020
  • 4. ------, Weak type endpoint bounds for Bochner-Riesz multipliers, Revista Mat. Iberoamericana 3 (1987), 25--31. MR 90i:42024
  • 5. ------, Weak type (1,1) bounds for rough operators, Annals of Mathematics, 128 (1988): 19--42. MR 89m:42013
  • 6. M. Christ and C. D. Sogge, The weak-type $L^1$ convergence of eigenfunction expansions for pseudo-differential operators, Invent. Math. 94 (1988): 421--453. MR 89j:35096
  • 7. C. Feffermann, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9--36. MR 41:2468
  • 8. ------, The multiplier problem for the ball, Ann. of Math. 94 (1971): 330--336. MR 45:5661
  • 9. C. Feffermann and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971): 107--115. MR 44:2026
  • 10. L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193--218. MR 58:29418
  • 11. A. Seeger, Endpoint estimates for multiplier transformations on compact manifolds, Indiana Math. J. 40 (1991): 471-533. MR 92f:58166
  • 12. ------, Endpoint inequalities for Bochner-Riesz multipliers in the plane, to appear, Pacific J. Math.
  • 13. A. Seeger and C. D. Sogge, On the boundedness of functions of (pseudo)-differential operators on compact manifolds, Duke Math. J. 59 (1989): 709--736. MR 91d:58244
  • 14. C. D. Sogge, On the convergence of Riesz means on compact manifolds, Annals of Math. 126 (1987), 439--447. MR 89b:35126
  • 15. ------, Concerning the $L^p$ norm of spectral clusters for second-order elliptic operators on compact manifolds, J. Funct. Anal. 77 (1988): 123--138. MR 89d:35131
  • 16. ------, Fourier Integrals in Classical Analysis, Cambridge Tracts in Math. # 105, Cambridge Univ. Press, 1993. MR 94c:35178

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 42B15

Retrieve articles in all journals with MSC (1991): 42B15


Additional Information

Terence Tao
Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
Email: tao@math.princeton.edu

DOI: https://doi.org/10.1090/S0002-9939-96-03371-0
Received by editor(s): March 14, 1995
Communicated by: Christopher D. Sogge
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society