Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Lindelöf powers and products of function spaces


Authors: Oleg Okunev and Kenichi Tamano
Journal: Proc. Amer. Math. Soc. 124 (1996), 2905-2916
MSC (1991): Primary 54C35, 54D20
DOI: https://doi.org/10.1090/S0002-9939-96-03629-5
MathSciNet review: 1353393
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give criteria for finite and countable powers of a space similar to the Michael line being Lindelöf. As applications, we give examples related to Lindelöf property in products of spaces of Michael line type and in products of spaces of continuous functions on separable $\sigma $-compact spaces.


References [Enhancements On Off] (What's this?)

  • [Arh1] A. V. Arhangel'skii, Topological Function Spaces, Kluwer Acad. Publ., Dordrecht--Boston--London, 1992. MR 92i:54022
  • [Arh2] A. V. Arhangel'skii, Problems in $C_{p}$-theory, Open problems in Topology (J. van Mill and G. M. Reed, ed.), North-Holland, Amsterdam, 90, pp. 601--616. MR 92c:54001
  • [Arh3] A. V. Arhangel'skii, Hurewicz spaces, analytic sets, and fan tightness of function spaces, Soviet Math. Dokl. 33 (1986), 396--399. MR 87i:54079
  • [AU] A. V. Arhangelskii and V. V. Uspenskii, On the cardinality of Lindelöf subspaces of function spaces, Comment. Math. Univ. Carolinae 27 (4) (1986), 673--676. MR 88d:54003
  • [Bat] D. P. Baturov, On subspaces of function spaces, Vestnik Mos. Un-ta, Ser. 1, Matem., Mekhan. (1987), no. 4 (Russian); English Transl. in Moscow Univ. Math. Bull. 43 (1987) no. 4, 75--78. MR 89a:54018
  • [Eng] R. Engelking, General Topology, PWN, Warszawa, 1977. MR 58:18316b
  • [La] L. B. Lawrence, Lindelöf spaces concentrated on Bernstein subsets of the real line, Proc. Amer. Math. Soc. 114 (1) (1992), 211--215. MR 92c:54028
  • [LM] A. G. Leiderman and V. I. Malykhin, Nonpreservation of final compactness for the multiplication of spaces of type $C_{p}(X)$, Siberian Math. J. 29 (1988), 65--72. MR 89h:54019
  • [Ok1] O. G. Okunev, On Lindelöf $\Sigma $-spaces of continuous functions in the topology of pointwise convergence, Topology Appl. 49 (1993), 149--166. MR 94b:54055
  • [Ok2] O. Okunev, On Lindelöf sets of continuous functions, Topology Appl. 63 (1995), 91--96. CMP 95:11
  • [OY] O. G. Okunev and I. V. Yashchenko, On spaces of continuous functions on separable $\sigma $-compact spaces, Vestnik Mos. Un-ta, Ser. 1, Matem., Mekhan. (1993), no. 5, 75--78 (Russian); English Transl. in Moscow Univ. Math. Bull. 48 (1993).
  • [Pol] R. Pol, Concerning function spaces on separable compact spaces, Bull. Acad. Pol. Sci., Ser. Astr., Mat., Phys 25 (10) (1977), 993--997. MR 57:1414
  • [Pr1] T. C. Przymusinski, On the notion of $n$-cardinality, Proc. Amer. Math. Soc. 69 (2) (1978), 333--338. MR 58:10456
  • [Pr2] T. C. Przymusinski, Normality and paracompactness in finite and Cartesian products, Fund. Math. 105 (1980), 87--104. MR 80m:54010
  • [RJ] A. Rogers and E. Jayne (eds.), Analytic Sets, Academic Press, London, 1980.
    MR 80m:03063
  • [Sip] O. Sipacheva, Lindelöf subspaces of functional spaces for linearly ordered separable compact spaces, General Topology. Spaces and Mappings, Moscow University Publ., Moscow, 1989, pp. 143--148 (Russian). CMP 91:08; MR 91j:54001
  • [Vel] N. V. Velichko, On the weak topology of spaces of continuous functions, Matem. Zametki 30 (5) (1981), 703--712 (Russian). MR 83f:54006
  • [Zen] Ph. Zenor, Hereditary $\mathfrak {m}$-separability and hereditary $\mathfrak {m}$-Lindelöf property in product spaces and function spaces, Fund. Math. 106 (3) (1981), 175--180. MR 82a:54039

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 54C35, 54D20

Retrieve articles in all journals with MSC (1991): 54C35, 54D20


Additional Information

Oleg Okunev
Affiliation: Computer Science and Engineering Laboratory, The University of Aizu, Ikki machi, Aizu-Wakamatsu City, Fukushima 965, Japan
Address at time of publication: Facultad de Ciencias, Departamento de Matematicas, Ciudad Universitaria, Circuito Exterior, C. P. 04510, Mexico D. F., Mexico
Email: o-okunev@rsc.u-aizu.ac.jp, oleg@lya.fciencias.unam.mx

Kenichi Tamano
Affiliation: Department of Mathematics, Faculty of Engineering, Yokohama National University, 156 Tokiwadai, Hodogaya, Yokohama 240, Japan
Email: tamano@math.sci.ynu.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-96-03629-5
Keywords: Sets of reals, products, Lindel\"{o}f spaces, function spaces
Received by editor(s): July 22, 1994
Received by editor(s) in revised form: March 2, 1995
Communicated by: Franklin D. Tall
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society