THE DISTANCE FROM THE APOSTOL SPECTRUM

V. KORDULA AND V. MÜLLER

(Communicated by Palle E. T. Jorgensen)

Abstract. If T is an s-regular operator in a Banach space (i.e. T has closed range and $N(T) \subset R^\infty(T)$) and $\gamma(T)$ is the Kato reduced minimum modulus, then

$$\lim_{n \to \infty} \gamma(T^n)^{1/n} = \sup \{ r : T - \lambda \text{ is } s\text{-regular for } |\lambda| < r \}.$$

Let x be an element of a Banach algebra A. The spectral radius of x is given by the well-known spectral radius formula:

$$r(x) = \lim_{n \to \infty} \|x^n\|^{1/n}.$$

There are a number of generalizations of this formula. If we set $d(x) = \inf \{ \|xy\| : y \in A, \|y\| = 1 \}$ and denote by $\tau(x) = \{ \lambda \in \mathbb{C} : d(x - \lambda) = 0 \}$ the left approximate point spectrum of x, then $\text{dist}(0, \tau(x)) = \lim_{n \to \infty} d(x^n)^{1/n}$; see [13], [9]. In particular, in the algebra $B(X)$ of all bounded linear operators in a Banach space X this gives formulas for radii of boundedness below or surjectivity:

$$\sup \{ r : T - \lambda \text{ is bounded below for } |\lambda| < r \} = \lim_{n \to \infty} j(T^n)^{1/n}$$

and

$$\sup \{ r : T - \lambda \text{ is onto for } |\lambda| < r \} = \lim_{n \to \infty} k(T^n)^{1/n},$$

where $j(T)$ and $k(T)$ are the moduli of injectivity and surjectivity of T:

$$j(T) = \inf \{ \|Tx\| : x \in X, \|x\| = 1 \} \text{ and } k(T) = \sup \{ r : TU_X \supset rU_X \},$$

where U_X is the closed unit ball in X.

For a bounded linear operator T in a Banach space X denote by $N(T)$ and $R(T)$ its kernel and range, respectively. Denote further $R^\infty(T) = \bigcap_{n=1}^{\infty} R(T^n)$ and $N^\infty(T) = \bigcup_{n=1}^{\infty} N(T^n)$.

The injectivity and surjectivity moduli of an operator which is bounded below (onto) are special cases of the Kato reduced minimum modulus [7]

$$\gamma(T) = \inf \left\{ \frac{\|Tx\|}{\text{dist}(x, N(T))} : x \in X \setminus N(T) \right\}$$

(for $T = 0$ we define formally $\gamma(T) = \infty$).

The existence and the meaning of the limit $\lim_{n \to \infty} \gamma(T^n)^{1/n}$ in a more general setting were studied by Apostol [1] and Mbekhta [10].

Received by the editors October 14, 1994 and, in revised form, January 26, 1995.

1991 Mathematics Subject Classification. Primary 47A10, 47A53.

The research was supported by the grant No. 119106 of the Academy of Sciences of the Czech Republic.

©1996 American Mathematical Society
Definition. Let $T \in B(X)$. We say that T is s-regular (= semi-regular) if $R(T)$ is closed and $N(T) \subset R^\infty(T)$.

The s-regular operators and closely related classes of operators were studied (under various names) by many authors; see [3, 4, 5, 6, 8, 16]. We list some of the most important equivalent conditions for s-regular operators; see [11, 12].

Theorem. Let $T \in B(X)$ be an operator with a close range. The following conditions are equivalent:

(1) T is s-regular,

(2) the function $\lambda \mapsto R(T - \lambda)$ is continuous at 0 in the gap topology,

(3) the function $\lambda \mapsto N(T - \lambda)$ is continuous at 0 in the gap topology,

(4) the function $\lambda \mapsto \gamma(T - \lambda)$ is continuous at 0,

(5) $\liminf_{\lambda \to 0} \gamma(T - \lambda) > 0$,

(6) $N^\infty(T) \subset R(T)$,

(7) $N^\infty(T) \subset R^\infty(T)$.

Denote further $\sigma_\gamma(T) = \{ \lambda \in C : T - \lambda \text{ is not s-regular} \}$. The set $\sigma_\gamma(T)$ was studied by Apostol [1], Rakocević [15], Mbekhta and Ouahab [11, 12] and Mbekhta [10]. The terminology is not unified; we suggest to call $\sigma_\gamma(T)$ the Apostol spectrum of T.

The Apostol spectrum $\sigma_\gamma(T)$ is always a non-empty compact subset of the complex plane, $\partial \sigma(T) \subset \sigma_\gamma(T) \subset \sigma(T)$ and $\sigma_\gamma(T) = f\sigma_\gamma(T)$ for any function f analytic in a neighbourhood of $\sigma(T)$.

If T is an s-regular operator in a Hilbert space, then the limit $\lim_{n \to \infty} \gamma(T^n)^{1/n}$ exists and

$$\lim_{n \to \infty} \gamma(T^n)^{1/n} = \text{dist}(0, \sigma_\gamma(T)) = \sup\{ r : T - \lambda \text{ is s-regular for } |\lambda| < r \};$$

see [1, Theorem 3.2] or [10, Theorem 3.1].

The aim of this paper is to prove equality (1) for operators in Banach spaces. This gives a positive answer to the conjecture of Rakocević [15] and Mbekhta and generalizes the above-mentioned results for radii of injectivity and surjectivity.

Further, we study the essential version of this result.

If T is a semi-Fredholm operator, then the limit $\lim_{n \to \infty} \gamma(T^n)^{1/n}$ exists by [2] and it is equal to the semi-Fredholm radius of T:

$$\lim_{n \to \infty} \gamma(T^n)^{1/n} = \sup\{ r : T - \lambda \text{ is semi-Fredholm for } |\lambda| < r \};$$

see [17] and [2].

We prove a similar formula for essentially s-regular operators which generalizes the semi-Fredholm case.

The authors wish to thank M. Mbekhta for drawing their attention to the problem and for fruitful discussions concerning it.

Lemma 1. $T \in B(X)$ is s-regular if and only if there exists a closed subspace $M \subset X$ such that $TM = M$ and the operator $\tilde{T} : X/M \to X/M$ induced by T is bounded below.

Proof. If T is s-regular, then set $M = R^\infty(T)$. It is well known that M is closed and (see e.g. [4, Theorem 3.4]) that $TM = M$ and $\tilde{T} : X/M \to X/M$ is bounded from below.
Conversely, let M be the subspace of X with the required properties. Then $TM = M$ implies $M \subset R^\infty(T)$. If $Tx = 0$, then $\tilde{T}(x + M) = 0$ and the injectivity of \tilde{T} implies $x \in M$. Thus $N(T) \subset M \subset R^\infty(T)$.

It remains to prove that T has closed range. Let $\pi : X \to X/M$ be the canonical projection. We show $R(T) = \pi^{-1}R(\tilde{T})$. If $y \in R(T), y = Tx$ for some $x \in X$, then $\pi y = Tx + M = \tilde{T}(x + M) \in R(\tilde{T})$ so that $R(T) \subset \pi^{-1}R(\tilde{T})$. If $y \in X$ and $\pi y \in R(\tilde{T})$, i.e. $y + M = Tx + M$ for some $x \in X$, then $y \in R(T)$ since $M \subset R(T)$. Thus $R(T) = \pi^{-1}R(\tilde{T})$, which is closed since $R(\tilde{T})$ is closed and π continuous.

Lemma 2. Let $T \in B(X)$, and let M be a closed subspace of X such that $TM = M$ and the operator $\tilde{T} : X/M \to X/M$ induced by T is bounded below. Denote by $T_1 : M \to M$ the restriction of T to M. Then

$$\lim_{n \to \infty} \gamma(T^n)^{1/n} = \min \{ \lim_{n \to \infty} \gamma(T^n_1)^{1/n}, \lim_{n \to \infty} \gamma(\tilde{T}^n)^{1/n} \}.$$

Proof. The limits on the right-hand side exist by [17]. If $T^nx = 0$, then $\tilde{T}^n(x+M) = 0$, i.e. $x \in M$. Thus $N(T^n) \subset M$ and $N(T^n_1) = N(T^n)$. We have

$$\gamma(T^n) = \inf \left\{ \frac{\|T^n x\|}{\text{dist}\{ x, N(T^n_1) \}} : x \in M \setminus N(T^n) \right\}$$

$$= \inf \left\{ \frac{\|T^n x\|}{\text{dist}\{ x, N(T^n) \}} : x \in M \setminus N(T^n) \right\} \geq \gamma(T^n).$$

Further, since $TM = M$,

$$\gamma(\tilde{T}^n) = \inf \left\{ \frac{\|\tilde{T}^n(x + M)\|}{\|x + M\|} : x \not\in M \right\} = \inf \left\{ \frac{\|T^n x + M\|}{\text{dist}\{ x, M \}} : x \not\in M \right\}$$

$$\geq \inf \left\{ \frac{\|T^n x\|}{\text{dist}\{ x, M \}} : x \not\in M \right\} \geq \inf \left\{ \frac{\|T^n x\|}{\text{dist}\{ x, N(T^n) \}} : x \not\in M \right\} \geq \gamma(T^n).$$

Thus $\gamma(T^n) \leq \min \{ \gamma(T^n_1), \gamma(\tilde{T}^n) \}$ and

$$\lim_{n \to \infty} \gamma(T^n)^{1/n} \leq \min \{ \lim_{n \to \infty} \gamma(T^n_1)^{1/n}, \lim_{n \to \infty} \gamma(\tilde{T}^n)^{1/n} \}.$$

Denote

$$s = \min \{ \lim_{n \to \infty} \gamma(T^n_1)^{1/n}, \lim_{n \to \infty} \gamma(\tilde{T}^n)^{1/n} \}.$$

We prove $\lim \inf_{n \to \infty} \gamma(T^n)^{1/n} \geq s$.

Let $n \geq 1$, $x = x_0 \in R(T^n)$, $\|x\| = 1$, and let $s > \varepsilon > 0$. Then $x + M \in R(\tilde{T}^n)$ and

$$\|\tilde{T}^{-i}(x + M)\| \leq \gamma(\tilde{T}^{-1}) \|x + M\| \leq \gamma(\tilde{T}^{-1})^{-1} (i = 1, \ldots, n).$$

Thus there exist vectors $x_i \in \tilde{T}^{-i}(x + M)$ such that

$$\|x_i\| \leq \gamma(\tilde{T}^{-i})^{-1} (1 + \varepsilon) \quad (i = 1, \ldots, n).$$

Denote $m_i = Tx_{i+1} - x_i$ $(i = 0, \ldots, n - 1)$. Then

$$\|m_i\| \leq \|T\| \|x_{i+1}\| + \|x_i\| \leq (1 + \varepsilon) [\|T\| \gamma(\tilde{T}^{i+1})^{-1} + \gamma(\tilde{T}^{-1})^{-1}] \quad (i = 0, \ldots, n - 1).$$
Further, \(\tilde{T}^i(m_i + M) = T^{i+1}x_{i+1} - T^ix_i + M = M \) so that \(m_i \in M \) for each \(i \). We have
\[
\sum_{i=0}^{n-1} T^i m_i = (T^n x_n - T^{n-1}x_{n-1}) + (T^{n-1} x_{n-1} - T^{n-2}x_{n-2}) + \cdots + (T_1 x - x)
\]
\[
= T^n x_n - x.
\]
Since \(T_1 M \to M \) is onto, there exist vectors \(m_i' \in M \) such that \(T^{n-i} m_i' = m_i \) and \(\|m_i'\| \leq (1 + \varepsilon)\gamma(T_1^{n-i})^{-1}\|m_i\| \). Thus
\[
T^n \left(x_n - \sum_{i=0}^{n-1} m_i' \right) = T^n x_n - \sum_{i=0}^{n-1} T^i m_i = x
\]
and
\[
\left\| x_n - \sum_{i=0}^{n-1} m_i' \right\| \leq (1 + \varepsilon)\gamma(T^n)^{-1} + \sum_{i=0}^{n-1} (1 + \varepsilon)^2 \gamma(T_1^{n-i})^{-1} \left(\|T\|\gamma(T_1^{i+1})^{-1} + \gamma(T_i)^{-1} \right).
\]
Thus
\[
\gamma(T^n)^{-1} \leq (1 + \varepsilon)\gamma(T^n)^{-1} + \sum_{i=0}^{n-1} (1 + \varepsilon)^2 \gamma(T_1^{n-i})^{-1} \left(\|T\|\gamma(T_1^{i+1})^{-1} + \gamma(T_i)^{-1} \right).
\]
Find \(n_0 \) such that
\[
\gamma(T_1^i) \geq (s - \varepsilon)^i, \quad \gamma(T_i^i) \geq (s - \varepsilon)^i \quad (i \geq n_0).
\]
Denote
\[
K = \max_{1 \leq i \leq n_0+1} \max \{ \gamma(T_1^i)^{-1}, \gamma(T_i^i)^{-1}, (s - \varepsilon)^{-i} \}.
\]
For \(n \) large enough we have
\[
\gamma(T^n)^{-1} \leq (1 + \varepsilon)^2 \left((s - \varepsilon)^{-n} + \sum_{i=n_0}^{n-n_0} (s - \varepsilon)^{1-n} (\|T\|(s - \varepsilon)^{-i-1} + (s - \varepsilon)^{-i})
\]
\[
+ \sum_{i=n_0}^{n-1} (s - \varepsilon)^{1-n} (\|T\| \cdot K + K) + \sum_{i=n-n_0}^{n-1} K((\|T\|(s - \varepsilon)^{-i-1} + (s - \varepsilon)^{-i})) \right]
\]
\[
\leq (1 + \varepsilon)^2 (s - \varepsilon)^{n_0-n} \left[K + (n - 2n_0)(K \cdot \|T\| + K) + 2n_0K(\|T\| \cdot K + K) \right]
\]
\[
\leq (1 + \varepsilon)^2 (s - \varepsilon)^{n_0-n} \cdot K',
\]
where \(K' \) is a constant independent of \(n \). Hence
\[
\liminf_{n \to \infty} \gamma(T^n)^{1/n} \geq \liminf_{n \to \infty} (s - \varepsilon)^{\frac{n-n_0}{n}} = s - \varepsilon.
\]
Since \(\varepsilon > 0 \) was arbitrary, we conclude that \(\liminf_{n \to \infty} \gamma(T^n)^{1/n} \geq s \), so that
\[
\lim_{n \to \infty} \gamma(T^n)^{1/n} = s.
\]
Theorem 3. Let $T \in B(X)$ be s-regular. Then
\[
\text{dist}\{0, \sigma(T)\} = \lim_{n \to \infty} \gamma(T^n)^{1/n}.
\]

Proof. Denote $r = \text{dist}\{0, \sigma(T)\}$. Let $M = R^\infty(T), T_1 = T|_M$, and let $\tilde{T} : X/M \to X/M$ be the operator induced by T. If λ is a complex number satisfying

\[
|\lambda| < \lim_{n \to \infty} \gamma(T^n)^{1/n} = \min\{\lim_{n \to \infty} \gamma(T_1^n)^{1/n}, \lim_{n \to \infty} \gamma(\tilde{T}^n)^{1/n}\},
\]

then $T_1 - \lambda$ is onto and $\tilde{T} - \lambda$ is bounded below. Thus $T - \lambda$ is s-regular by Lemma 1 and $\lim_{n \to \infty} \gamma(T^n)^{1/n} \leq r$.

Conversely, it is well known (see e.g. [15, Theorem 5.2]) that $R^\infty(T - \lambda)$ is constant on the component of $C\setminus\sigma(T)$ containing 0, in particular $R^\infty(T - \lambda) = M$ for $|\lambda| < r$. If $|\lambda| < r$, then $(T - \lambda)M = M$ and $\tilde{T} - \lambda = \tilde{T} - \lambda : X/M \to X/M$ is bounded below. Thus $\lim_{n \to \infty} \gamma(T_1^n)^{1/n} \geq r$ and $\lim_{n \to \infty} \gamma(\tilde{T}^n)^{1/n} \geq r$. Hence $\lim_{n \to \infty} \gamma(T^n)^{1/n} \geq r$ by Lemma 2.

Remark. It is possible to deduce the inequality $\text{dist}\{0, \sigma(T)\} \geq \lim_{n \to \infty} \gamma(T^n)^{1/n}$ from [11, Theorem 2.10]. We have obtained a new direct proof of this result.

Definition. $T \in B(X)$ is called essentially s-regular if $R(T)$ is closed and there exists a finite-dimensional subspace $F \subset X$ such that $N(T) \subset R^\infty(T) + F$.

Define further $\sigma_{e\gamma}(T) = \{\lambda \in C : T - \lambda$ is not essentially s-regular$\}$.

For properties of essentially s-regular operators and the set $\sigma_{e\gamma}(T)$ see [14, 15].

Theorem 4. Let $T \in B(X)$ be essentially s-regular. Then $\lim_{n \to \infty} \gamma(T^n)^{1/n}$ exists and
\[
\lim_{n \to \infty} \gamma(T^n)^{1/n} = \max\{r : T - \lambda$ is s-regular for $0 < |\lambda| < r\} = \text{dist}\{0, \sigma(T)\}\{0\}.
\]

Proof. By [14, Theorem 3.1] or [15, Theorem 2.1] there exist subspaces $X_1, X_2 \subset X$ such that $X = X_1 \oplus X_2, \dim X_1 < \infty, TX_1 \subset X_1, TX_2 \subset X_2, T_1 = T|_{X_1}$ is nilpotent and $T_2 = T|_{X_2}$ is s-regular (the Kato decomposition). By the previous theorem $\text{dist}\{0, \sigma(T_2)\} = \lim_{n \to \infty} \gamma(T_2^n)^{1/n}$. For $n \geq \dim X_1$ we have $T_1^n = 0$ so that $N(T^n) = X_1 \oplus N(T_2^n)$. Let P be the projection with $R(P) = X_2$ and $N(P) = X_1$. Let $x_2 \in X_2$. We have
\[
\text{dist}\{x_2, N(T_2^n)\} = \inf\{\|x_2 - y_2\| : y_2 \in X_2, T_2^n y_2 = 0\}
\leq \|P\| \inf\{\|y_1 \oplus (x_2 - y_2)\| : y_1 \in X_1, y_2 \in X_2, T_2^n y_2 = 0\}
\leq \|P\| \text{dist}\{x_2, N(T_2^n)\} \leq \|P\| \text{dist}\{x_2, N(T^n)\} = \|P\| \text{dist}\{x_2, N(T_2^n)\}.
\]

Then
\[
\gamma(T_2^n) = \inf\left\{\frac{\|T_2^n x_2\|}{\text{dist}\{x_2, N(T_2^n)\}} : x_2 \in X_2 \setminus N(T_2^n)\right\}
\leq \inf\left\{\frac{\|T^n x_2\|}{\text{dist}\{x_2, N(T)\}} : x_2 \in X_2 \setminus N(T)\right\}
\leq \inf\left\{\frac{\|T^n (x_1 \oplus x_2)\|}{\text{dist}\{x_1 \oplus x_2, N(T)\}} : x_1 \oplus x_2 \in X \setminus N(T)\right\} = \gamma(T^n).
\]
and
\[\gamma(T^n) \leq \inf \left\{ \frac{\|T^n x\|}{\text{dist}\{x, N(T^n)\}} : x \in X \setminus N(T^n) \right\} \]
\[\leq \|P\| \inf \left\{ \frac{\|T^n x\|}{\text{dist}\{x, N(T^n)\}} : x \in X \setminus N(T^n) \right\} = \|P\| \gamma(T^n). \]

Hence \(\lim_{n \to \infty} \gamma(T^n)^{1/n} = \lim_{n \to \infty} \gamma(T^n)_{2}^{1/n} \).

If \(\lambda \neq 0 \), then \(T - \lambda \) is s-regular if and only if \(T_2 - \lambda \) is s-regular. Then
\[\max\{r : T - \lambda \text{ is s-regular for } 0 < |\lambda| < r \} = \text{dist}\{0, \sigma_x(T_2)\} = \lim_{n \to \infty} \gamma(T^n)^{1/n}. \]

The following lemma is an analog of Lemma 1 for essentially s-regular operators:

Lemma 5. \(T \in B(X) \) is essentially s-regular if and only if there exists a closed subspace \(M \subset X \) such that \(TM = M \) and the operator \(\tilde{T} : X/M \to X/M \) induced by \(T \) is upper semi-Fredholm.

Proof. If \(T \) is essentially s-regular, then set \(M = R^\infty(T) \). If \(X = X_1 \oplus X_2 \) is the Kato decomposition (\(\dim X_1 < \infty, TX_1 \subset X_1, TX_2 \subset X_2, T_1 = T|X_1 \) nilpotent and \(T_2 = T|X_2 \) s-regular), then \(M = R^\infty(T_2) \subset X_2 \) and \(TM = T_2M = M \). If \(x = x_1 \oplus x_2 \) satisfies \(Tx \in M \), then \(T_2x_2 \in M \) so that \(x \in X_1 + M \). Thus \(x \in X_1 + M \) and \(N(\tilde{T}) \subset X_1 + M \). Hence \(\dim N(\tilde{T}) < \infty \).

Let \(\pi : X \to X/M \) be the canonical projection. Since \(M \subset R(T) \) and \(R(\tilde{T}) = \{Tx + M : x \in X\} = \pi R(T) \), the range of \(\tilde{T} \) is closed. Thus \(\tilde{T} \) is upper semi-Fredholm.

Conversely, let \(M \) be a subspace of \(X \) with the required properties. We can prove that \(R(T) \) is closed in exactly the same way as in Lemma 1.

Further, \(M \subset R^\infty(T) \). If \(Tx = 0 \), then \(\tilde{T}(x + M) = 0 \), i.e. \(\pi x \in N(\tilde{T}) \). Thus \(N(\tilde{T}) \subset \pi^{-1}N(T) \subset M + F \subset R^\infty(T) + F \) for a finite-dimensional subspace \(F \subset X \).

Theorem 6. Let \(T, A \in B(X), TA = AT \), and let \(A \) be a quasinilpotent. Then

1. \(\sigma_c(T + A) = \sigma_c(T) \),
2. \(\sigma_{\gamma}(T + A) = \sigma_{\gamma}(T) \).

Proof. Let \(T \) be an essentially s-regular operator, and let \(A \) be a quasinilpotent commuting with \(T \). Denote \(M = R^\infty(T), T_1 = T|M \), and let \(\tilde{T} : X/M \to X/M \) be the operator induced by \(T \). Clearly \(AM \subset M \) so that we can define operators \(A_1 = A|M \) and \(A : X/M \to X/M \) induced by \(A \). Clearly \(r(A_1) = \lim_{n \to \infty} \|A_1^n\|^{1/n} \leq \lim_{n \to \infty} \|A^n\|^{1/n} = 0 \) and \(r(A) = \lim_{n \to \infty} \|A^n\|^{1/n} \leq \lim_{n \to \infty} \|A^n\|^{1/n} = 0 \) so that \(\sigma(A_1) = \{0\} \) and \(\sigma(A) = \{0\} \). Further \(T_1A_1 = A_1T_1 \) and \(TA = AT \). Denote by
\[\sigma_{\delta}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not onto}\}, \]
\[\sigma_{*}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not bounded below}\}, \]
\[\sigma_{\pi e}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not upper semi-Fredholm}\} \]
the defect spectrum, the approximate point spectrum and the essential approximate point spectrum, respectively.
By the spectral mapping property for these spectra we have
\[\sigma_\delta(T_1 + A_1) = \sigma_\delta(T), \]
\[\sigma_\pi(\tilde{T} + \tilde{A}) = \sigma_\pi(\tilde{T}), \]
\[\sigma_{\pi e}(\tilde{T} + \tilde{A}) = \sigma_{\pi e}(\tilde{T}). \]
Thus \(0 \notin \sigma_\delta(T + A) \), i.e. \((T + A)M = M\). Similarly \(0 \notin \sigma_{\pi e}(\tilde{T} + \tilde{A}) \), i.e. \(\tilde{T} + \tilde{A}\) is upper semi-Fredholm. By the previous lemma \(T + A \) is essentially s-regular. This proves (2).

If \(T \) is s-regular and \(A \) a quasinilpotent commuting with \(T \), then in the same way \((T + A)M = M\) and \(\tilde{T} + \tilde{A}\) is bounded below. Hence \(T + A \) is s-regular by Lemma 1.

Remark. Statement (1) for Hilbert space operators was proved in [10, Theorem 4.8]. The second statement gives a positive answer to Question 3 of [15].

References