Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On $C^{*}$-algebras associated
with locally compact groups

Authors: M. B. Bekka, E. Kaniuth, A. T. Lau and G. Schlichting
Journal: Proc. Amer. Math. Soc. 124 (1996), 3151-3158
MSC (1991): Primary 43A30, 22D10
MathSciNet review: 1328338
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G$ be a locally compact group, and let $G_{d}$ denote the same group $G$ with the discrete topology. There are various $C^{*}\text {-algebras}$ associated to $G$ and $G_{d}.$ We are concerned with the question of when these $C^{*}\text {-algebras}$ are isomorphic. This is intimately related to amenability. The results can be reformulated in terms of Fourier and Fourier-Stieltjes algebras and of weak containment properties of unitary representations.

References [Enhancements On Off] (What's this?)

  • [AkO] C. Akemann and P. Ostrand, Computing norms in group $C^{*}\text {-algebras}$, Amer. J. Math. 98 (1976), 1015--1048. MR 56:1079
  • [Béd] E. Bédos, On the $C^{*}\text {-algebra}$ generated by the left regular representation of a locally compact group, Proc. Amer. Math. Soc. 120 (1994), 603--608. MR 94d:22004
  • [BCH] M.B. Bekka, M. Cowling and P. de la Harpe, Some groups whose reduced $C^{*}$-algebra is
    , Publ. Math. IHES 80 (1994), 117--134.
  • [Bek] M.B. Bekka, Amenable unitary representations of locally compact groups, Invent. Math. 100 (1990), 383--401. MR 91g:22007
  • [BeV] M.B. Bekka and A. Valette, On duals of Lie groups made discrete, J. reine angew. Math. 439 (1993), 1--10. MR 94k:22003
  • [Dix] J. Dixmier, $C^{*}\text {-algebras}$, North-Holland, 1977. MR 56:16388
  • [DuR] C. Dunkl and D. Ramirez, $C^{*}\text {-algebras}$ generated by Fourier-Stieltjes transforms, Trans. Amer. Math. Soc. 164 (1972), 435--441. MR 46:9646
  • [Eym] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181--236. MR 37:4208
  • [HeR] E. Hewitt and K. Ross, Abstract Harmonic Analysis I, Springer-Verlag, 1994.
  • [Kes] H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959), 336--354. MR 22:253
  • [Lei] M. Leinert, Faltungsoperatoren auf gewissen diskreten Gruppen, Studia Math. 52 (1974), 149--158. MR 50:7594
  • [MoZ] D. Montgomery and L. Zippin, Topological transformation groups, Interscience (1955). MR 17:383
  • [Pat] A. Paterson, Amenability, Amer. Math. Soc. (1988). MR 90e:43001
  • [Pie] J.P. Pier, Amenable Locally Compact Groups, Wiley, 1984. MR 86a:43001

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 43A30, 22D10

Retrieve articles in all journals with MSC (1991): 43A30, 22D10

Additional Information

M. B. Bekka
Affiliation: Département de Mathématiques, University de Metz, UFR M.I.M. Ile du Saulcy, F-57045 Metz Cedex 01, France

E. Kaniuth
Affiliation: Fachbereich Mathematik-Informatik, Universität-GH Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany

A. T. Lau
Affiliation: Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

G. Schlichting
Affiliation: Mathematisches Institut, Technische Universität München, Arcisstrasse 21, W-80333 München 2, Germany

Keywords: Amenable group, connected Lie group, group $C^{*}$-algebra, weak containment, Fourier algebra
Additional Notes: This research is supported by a NATO collaborative research grant 940184.
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society