A note on Miller's theorem about maps

out of classifying spaces

Author:
C. A. McGibbon

Journal:
Proc. Amer. Math. Soc. **124** (1996), 3241-3245

MSC (1991):
Primary 55R35, 55P47, 55S37

DOI:
https://doi.org/10.1090/S0002-9939-96-03407-7

MathSciNet review:
1328362

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a connected infinite loop space whose fundamental group is a torsion group and let be a finite nilpotent -complex. The main result of this paper is that the space of based maps from to the profinite completion of is weakly contractible.

**1.**A. K. Bousfield and D. M. Kan,*Homotopy Limits, Completions and Localizations*, Lecture Notes in Math.**304**, Springer, 1972. MR**51:1825****2.**F. R. Cohen, T. J. Lada, and J. P. May,*The homology of iterated loop spaces*, Lecture Notes in Math.**533**, Springer, 1976. MR**55:9096****3.**E. Friedlander and G. Mislin,*Locally finite approximations of Lie groups*, Inventiones Math.**83**(1986) 425--436. MR**87i:55038****4.**B. Gray and C. A. McGibbon,*Universal phantom maps*, Topology**32**(1993) 371--394. MR**94a:55008****5.**C. A. McGibbon,*Phantom maps*, a chapter in*The Handbook of Algebraic Topology*, I. M. James, ed., North Holland, 1995.**6.**H. Miller,*The Sullivan conjecture on maps from classifying spaces*, Annals of Math.**120**(1984) 39--87. MR**85i:55012****7.**S. B. Priddy,*On and the infinite symmetric group*, Proc. Symp. Pure Math. AMS**22**(1971) 217--220. MR**50:11226****8.**D. Sullivan,*Genetics of homotopy theory and the Adams conjecture*, Annals of Math.**100**(1974) 1--79. MR**56:1305****9.**A. Zabrodsky,*On phantom maps and a theorem of H. Miller*, Israel J. Math.**58**(1987) 129--143. MR**88m:55028**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
55R35,
55P47,
55S37

Retrieve articles in all journals with MSC (1991): 55R35, 55P47, 55S37

Additional Information

**C. A. McGibbon**

Affiliation:
Department of Mathematics, Wayne State University, Detroit, Michigan 48202

Email:
mcgibbon@math.wayne.edu

DOI:
https://doi.org/10.1090/S0002-9939-96-03407-7

Received by editor(s):
January 10, 1995

Received by editor(s) in revised form:
April 4, 1995

Communicated by:
Thomas Goodwillie

Article copyright:
© Copyright 1996
American Mathematical Society