Again nice equations for nice groups
Author:
Shreeram S. Abhyankar
Journal:
Proc. Amer. Math. Soc. 124 (1996), 29672976
MSC (1991):
Primary 12F10, 14H30, 20D06, 20E22
MathSciNet review:
1343675
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Nice quartinomial equations are given for unramified coverings of the affine line in nonzero characteristic with PSU and SU as Galois groups where is any integer and is any power of .
 [A01]
Shreeram
Abhyankar, Coverings of algebraic curves, Amer. J. Math.
79 (1957), 825–856. MR 0094354
(20 #872)
 [A02]
Shreeram
Abhyankar, Tame coverings and fundamental groups of algebraic
varieties. I. Branch loci with normal crossings; Applications: Theorems of
Zariski and Picard, Amer. J. Math. 81 (1959),
46–94. MR
0104675 (21 #3428)
 [A03]
Shreeram
S. Abhyankar, Galois theory on the line in nonzero
characteristic, Bull. Amer. Math. Soc.
(N.S.) 27 (1992), no. 1, 68–133. MR 1118002
(94a:12004), http://dx.doi.org/10.1090/S027309791992002707
 [A04]
S. S. Abhyankar, Nice equations for nice groups, Israel Journal of Mathematics 88 (1994), 124. CMP 95:04
 [A05]
S. S. Abhyankar, More nice equations for nice groups, Proceedings of the American Mathematical Society 124 (1996), 35773591.
 [Asc]
Michael
Aschbacher, Finite group theory, Cambridge Studies in Advanced
Mathematics, vol. 10, Cambridge University Press, Cambridge, 1986. MR 895134
(89b:20001)
 [Dic]
L. E. Dickson, Linear Groups, Teubner, 1901.
 [Li1]
Martin
W. Liebeck, The affine permutation groups of rank three, Proc.
London Math. Soc. (3) 54 (1987), no. 3,
477–516. MR
879395 (88m:20004), http://dx.doi.org/10.1112/plms/s354.3.477
 [Li2]
M. W. Liebeck, Characterization of classical groups by orbit sizes on the natural module, Proceedings of the American Mathematical Society 124 (1996), 35613566.
 [LiK]
Peter
Kleidman and Martin
Liebeck, The subgroup structure of the finite classical
groups, London Mathematical Society Lecture Note Series,
vol. 129, Cambridge University Press, Cambridge, 1990. MR 1057341
(91g:20001)
 [Tay]
Donald
E. Taylor, The geometry of the classical groups, Sigma Series
in Pure Mathematics, vol. 9, Heldermann Verlag, Berlin, 1992. MR 1189139
(94d:20028)
 [PPS]
T. Penttila, C. E. Praeger and J. Saxl, Linear groups with orders divisible by certain large primes, (To Appear).
 [A01]
 S. S. Abhyankar, Coverings of algebraic curves, American Journal of Mathematics 79 (1957), 825856. MR 20:872
 [A02]
 S. S. Abhyankar, Tame coverings and fundamental groups of algebraic varieties, Part I, American Journal of Mathematics 81 (1959), 4694. MR 21:3428
 [A03]
 S. S. Abhyankar, Galois theory on the line in nonzero characteristic, Dedicated to ``FeitSerreEmail'', Bulletin of the American Mathematical Society 27 (1992), 68133. MR 94a:12004
 [A04]
 S. S. Abhyankar, Nice equations for nice groups, Israel Journal of Mathematics 88 (1994), 124. CMP 95:04
 [A05]
 S. S. Abhyankar, More nice equations for nice groups, Proceedings of the American Mathematical Society 124 (1996), 35773591.
 [Asc]
 M. Aschbacher, Finite Group Theory, Cambridge University Press, 1986. MR 89b:20001
 [Dic]
 L. E. Dickson, Linear Groups, Teubner, 1901.
 [Li1]
 M. W. Liebeck, The affine permutation groups of rank three, Proceedings of London Mathematical Society 54 (1987), 477516. MR 88m:20004
 [Li2]
 M. W. Liebeck, Characterization of classical groups by orbit sizes on the natural module, Proceedings of the American Mathematical Society 124 (1996), 35613566.
 [LiK]
 M. W. Liebeck and P. Kleidman, The Subgroup Structure of the Finite Classical Groups, Cambridge University Press, 1990. MR 91g:20001
 [Tay]
 D. E. Taylor, The Geometry of the Classical Groups, Heldermann Verlag, Berlin, 1992. MR 94d:20028
 [PPS]
 T. Penttila, C. E. Praeger and J. Saxl, Linear groups with orders divisible by certain large primes, (To Appear).
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
12F10,
14H30,
20D06,
20E22
Retrieve articles in all journals
with MSC (1991):
12F10,
14H30,
20D06,
20E22
Additional Information
Shreeram S. Abhyankar
Affiliation:
Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
Email:
ram@cs.purdue.edu
DOI:
http://dx.doi.org/10.1090/S0002993996034715
PII:
S 00029939(96)034715
Received by editor(s):
March 21, 1995
Additional Notes:
This work was partly supported by NSF grant DMS 91–01424 and NSA grant MDA 904–92–H–3035.
Communicated by:
Ronald M. Solomon
Article copyright:
© Copyright 1996
American Mathematical Society
