More nice equations for nice groups
Author:
Shreeram S. Abhyankar
Journal:
Proc. Amer. Math. Soc. 124 (1996), 29772991
MSC (1991):
Primary 12F10, 14H30, 20D06, 20E22
MathSciNet review:
1343676
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Nice quintinomial equations are given for unramified coverings of the affine line in nonzero characteristic with PSp and Sp as Galois groups where is any integer and is any power of .
 [A01]
Shreeram
Abhyankar, Coverings of algebraic curves, Amer. J. Math.
79 (1957), 825–856. MR 0094354
(20 #872)
 [A02]
Shreeram
Abhyankar, Tame coverings and fundamental groups of algebraic
varieties. I. Branch loci with normal crossings; Applications: Theorems of
Zariski and Picard, Amer. J. Math. 81 (1959),
46–94. MR
0104675 (21 #3428)
 [A03]
Shreeram
S. Abhyankar, Galois theory on the line in nonzero
characteristic, Bull. Amer. Math. Soc.
(N.S.) 27 (1992), no. 1, 68–133. MR 1118002
(94a:12004), http://dx.doi.org/10.1090/S027309791992002707
 [A04]
S. S. Abhyankar, Nice equations for nice groups, Israel Journal of Mathematics 88 (1994), 124. CMP 95:04
 [Asc]
Michael
Aschbacher, Finite group theory, Cambridge Studies in Advanced
Mathematics, vol. 10, Cambridge University Press, Cambridge, 1986. MR 895134
(89b:20001)
 [BuS]
Francis
Buekenhout and Ernest
Shult, On the foundations of polar geometry, Geometriae
Dedicata 3 (1974), 155–170. MR 0350599
(50 #3091)
 [CaK]
P.
J. Cameron and W.
M. Kantor, 2transitive and antiflag transitive collineation groups
of finite projective spaces, J. Algebra 60 (1979),
no. 2, 384–422. MR 549937
(81c:20032), http://dx.doi.org/10.1016/00218693(79)900905
 [Dic]
L. E. Dickson, Linear Groups, Teubner, 1901.
 [Kan]
William
M. Kantor, Rank 3 characterizations of classical geometries,
J. Algebra 36 (1975), no. 2, 309–313. MR 0387386
(52 #8229)
 [LiK]
Peter
Kleidman and Martin
Liebeck, The subgroup structure of the finite classical
groups, London Mathematical Society Lecture Note Series,
vol. 129, Cambridge University Press, Cambridge, 1990. MR 1057341
(91g:20001)
 [Tay]
Donald
E. Taylor, The geometry of the classical groups, Sigma Series
in Pure Mathematics, vol. 9, Heldermann Verlag, Berlin, 1992. MR 1189139
(94d:20028)
 [Tit]
Jacques
Tits, Buildings of spherical type and finite BNpairs, Lecture
Notes in Mathematics, Vol. 386, SpringerVerlag, BerlinNew York, 1974. MR 0470099
(57 #9866)
 [A01]
 S. S. Abhyankar, Coverings of algebraic curves, American Journal of Mathematics 79 (1957), 825856. MR 20:872
 [A02]
 S. S. Abhyankar, Tame coverings and fundamental groups of algebraic varieties, Part I, American Journal of Mathematics 81 (1959), 4694. MR 21:3428
 [A03]
 S. S. Abhyankar, Galois theory on the line in nonzero characteristic, Dedicated to ``FeitSerreEmail'', Bulletin of the American Mathematical Society 27 (1992), 68133. MR 94a:12004
 [A04]
 S. S. Abhyankar, Nice equations for nice groups, Israel Journal of Mathematics 88 (1994), 124. CMP 95:04
 [Asc]
 M. Aschbacher, Finite Group Theory, Cambridge University Press, 1986. MR 89b:20001
 [BuS]
 F. Buekenhout and E. E. Shult, On the foundations of polar geometry, Geometriae Dedicata 3 (1974), 155170. MR 50:3091
 [CaK]
 P. J. Cameron and W. M. Kantor, 2Transitive and antiflag transitive collineation groups of finite projective spaces, Journal of Algebra 60 (1979), 384422. MR 81c:20032
 [Dic]
 L. E. Dickson, Linear Groups, Teubner, 1901.
 [Kan]
 W. M. Kantor, Rank 3 characterizations of classical geometries, Journal of Algebra 36 (1975), 309313. MR 52:8229
 [LiK]
 M. W. Liebeck and P. Kleidman, The Subgroup Structure of the Finite Classical Groups, Cambridge University Press, 1990. MR 91g:20001
 [Tay]
 D. E. Taylor, The Geometry of the Classical Groups, Heldermann Verlag, Berlin, 1992. MR 94d:20028
 [Tit]
 J. Tits, Buildings of Spherical Type and Finite BNPairs, Springer Lecture Notes In Mathematics Number 386, 1974. MR 57:9866
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
12F10,
14H30,
20D06,
20E22
Retrieve articles in all journals
with MSC (1991):
12F10,
14H30,
20D06,
20E22
Additional Information
Shreeram S. Abhyankar
Affiliation:
Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
Email:
ram@cs.purdue.edu
DOI:
http://dx.doi.org/10.1090/S0002993996034727
PII:
S 00029939(96)034727
Received by editor(s):
March 21, 1995
Additional Notes:
This work was partly supported by NSF grant DMS 91–01424 and NSA grant MDA 904–92–H–3035.
Communicated by:
Ronald M. Solomon
Article copyright:
© Copyright 1996
American Mathematical Society
