Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A simple proof of Singer's
representation theorem


Author: Wolfgang Hensgen
Journal: Proc. Amer. Math. Soc. 124 (1996), 3211-3212
MSC (1991): Primary 46E15, 46E40
DOI: https://doi.org/10.1090/S0002-9939-96-03493-4
MathSciNet review: 1343697
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\Omega $ be a compact Hausdorff space and $X$ a Banach space. Singer's theorem states that under the dual pairing $(f,m)\mapsto \int \langle f,dm\rangle $, the dual space of $C(\Omega ;X)$ is isometric to $rcabv (\Omega ;X')$. Using the Hahn-Banach theorem and the (scalar) Riesz representation theorem, a proof of Singer's theorem is given which appears to be simpler than the proofs supplied earlier by Singer (1957, 1959) and Dinculeanu (1959, 1967).


References [Enhancements On Off] (What's this?)

  • [DU] J. Diestel, J.J. Uhl, Jr., Vector Measures, AMS, Providence, 1977 (Math. Surveys 15). MR 56:11216
  • [D1] N. Dinculeanu, Sur la représentation intégrale des certaines opérations linéaires. III, Proc. AMS 10 (1959), 59--68. MR 21:2909
  • [D2] N. Dinculeanu, Vector Measures, Pergamon Press, Oxford etc., 1967. MR 34:6011b
  • [R] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw Hill, New York etc., 1987. MR 88k:00002
  • [S1] I. Singer, Linear functionals on the space of continuous mappings of a compact Hausdorff space into a Banach space (in Russian), Rev. Roum. Math. Pures Appl. 2 (1957), 301--315. MR 20:3445
  • [S2] I. Singer, Sur les applications linéaires intégrales des espaces de fonctions continues. I, Rev. Roum. Math. Pures Appl. 4 (1959), 391--401. MR 22:5883

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46E15, 46E40

Retrieve articles in all journals with MSC (1991): 46E15, 46E40


Additional Information

Wolfgang Hensgen
Affiliation: NWF I – Mathematik, Universität Regensburg, D– 93040 Regensburg, Germany
Email: wolfgang.hensgen@mathematik.uni-regensburg.de

DOI: https://doi.org/10.1090/S0002-9939-96-03493-4
Keywords: Vector-valued continuous functions, regular vector measures
Received by editor(s): April 21, 1995
Communicated by: Dale E. Alspach
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society