Characterization of classical groups by orbit sizes on the natural module
Author:
Martin W. Liebeck
Journal:
Proc. Amer. Math. Soc. 124 (1996), 29612966
MSC (1991):
Primary 20G40
MathSciNet review:
1343709
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We show that if is a finite vector space, and is a subgroup of having the same orbit sizes on 1spaces as an orthogonal or unitary group on , then, with a few exceptions, is itself an orthogonal or unitary group on .
 [Ab]
S. Abhyankar, ``Again nice equations for nice groups'', Proc. Amer. Math. Soc. 124 (1996), 35673576.
 [As]
M.
Aschbacher, On the maximal subgroups of the finite classical
groups, Invent. Math. 76 (1984), no. 3,
469–514. MR
746539 (86a:20054), http://dx.doi.org/10.1007/BF01388470
 [At]
J.
H. Conway, R.
T. Curtis, S.
P. Norton, R.
A. Parker, and R.
A. Wilson, Atlas of finite groups, Oxford University Press,
Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups;
With computational assistance from J. G. Thackray. MR 827219
(88g:20025)
 [FK]
D.
A. Foulser and Michael
J. Kallaher, Solvable, flagtransitive, rank 3 collineation
groups, Geometriae Dedicata 7 (1978), no. 1,
111–130. MR 0472566
(57 #12263)
 [GPPS]
R. Guralnick, T. Penttila, C.E. Praeger and J. Saxl, ``Linear groups with orders having certain primitive prime divisors'', preprint, University of Western Australia, 1994.
 [He]
Christoph
Hering, Transitive linear groups and linear groups which contain
irreducible subgroups of prime order, Geometriae Dedicata
2 (1974), 425–460. MR 0335659
(49 #439)
 [At2]
C. Jansen, K. Lux, R.A. Parker and R.A. Wilson, Atlas of modular characters, Oxford University Press, 1995.
 [JP]
Wayne
Jones and Brian
Parshall, On the 1cohomology of finite groups of Lie type,
Proceedings of the Conference on Finite Groups (Univ. Utah, Park City,
Utah, 1975) Academic Press, New York, 1976, pp. 313–328. MR 0404470
(53 #8272)
 [Kl]
P.B. Kleidman, The subgroup structure of some finite simple groups, Ph.D. Thesis, University of Cambridge, 1987.
 [KL]
Peter
Kleidman and Martin
Liebeck, The subgroup structure of the finite classical
groups, London Mathematical Society Lecture Note Series,
vol. 129, Cambridge University Press, Cambridge, 1990. MR 1057341
(91g:20001)
 [Li]
Martin
W. Liebeck, The affine permutation groups of rank three, Proc.
London Math. Soc. (3) 54 (1987), no. 3,
477–516. MR
879395 (88m:20004), http://dx.doi.org/10.1112/plms/s354.3.477
 [LPS]
Martin
W. Liebeck, Cheryl
E. Praeger, and Jan
Saxl, The maximal factorizations of the finite simple groups and
their automorphism groups, Mem. Amer. Math. Soc. 86
(1990), no. 432, iv+151. MR 1016353
(90k:20048), http://dx.doi.org/10.1090/memo/0432
 [Zs]
K. Zsigmondy, ``Zur Theorie der Potenzreste'', Monatsh. fur Math. und Phys. 3 (1892), 265284.
 [Ab]
 S. Abhyankar, ``Again nice equations for nice groups'', Proc. Amer. Math. Soc. 124 (1996), 35673576.
 [As]
 M. Aschbacher, ``On the maximal subgroups of the finite classical groups'', Invent. Math. 76 (1984), 469514. MR 86a:20054
 [At]
 J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of finite groups, Oxford University Press, 1985. MR 88g:20025
 [FK]
 D.A. Foulser and M.J. Kallaher, ``Solvable, flagtransitive, rank 3 collineation groups'', Geom. Ded. 7 (1978), 111130. MR 57:12263
 [GPPS]
 R. Guralnick, T. Penttila, C.E. Praeger and J. Saxl, ``Linear groups with orders having certain primitive prime divisors'', preprint, University of Western Australia, 1994.
 [He]
 C. Hering, ``Transitive linear groups and linear groups which contain irreducible subgroups of prime order'', Geom. Ded. 2 (1974), 425460. MR 49:439
 [At2]
 C. Jansen, K. Lux, R.A. Parker and R.A. Wilson, Atlas of modular characters, Oxford University Press, 1995.
 [JP]
 W. Jones and B. Parshall, ``On the 1cohomology of finite groups of Lie type'', Proc. Conf. on Finite Groups, eds. W. Scott and F. Gross, Academic Press, (1976). MR 53:8272
 [Kl]
 P.B. Kleidman, The subgroup structure of some finite simple groups, Ph.D. Thesis, University of Cambridge, 1987.
 [KL]
 P.B. Kleidman and M.W. Liebeck, The Subgroup Structure of the Finite Classical Groups, London Math. Soc. Lecture Note Series 129, Cambridge University Press, Cambridge, 1990. MR 91g:20001
 [Li]
 M.W. Liebeck, ``The affine permutation groups of rank three'', Proc. London Math. Soc. 54 (1987), 477516. MR 88m:20004
 [LPS]
 M.W. Liebeck, C.E. Praeger and J. Saxl, ``The maximal factorizations of the finite simple groups and their automorphism groups'', Mem. Amer. Math. Soc. 86, No. 432 (1990), 1151. MR 90k:20048
 [Zs]
 K. Zsigmondy, ``Zur Theorie der Potenzreste'', Monatsh. fur Math. und Phys. 3 (1892), 265284.
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
20G40
Retrieve articles in all journals
with MSC (1991):
20G40
Additional Information
Martin W. Liebeck
Affiliation:
Department of Mathematics, Imperial College, London SW7 2BZ, United Kingdom
Email:
m.liebeck@ic.ac.uk
DOI:
http://dx.doi.org/10.1090/S0002993996035058
PII:
S 00029939(96)035058
Received by editor(s):
March 20, 1995
Communicated by:
Ronald M. Solomon
Article copyright:
© Copyright 1996
American Mathematical Society
