Characterization of classical groups

by orbit sizes on the natural module

Author:
Martin W. Liebeck

Journal:
Proc. Amer. Math. Soc. **124** (1996), 2961-2966

MSC (1991):
Primary 20G40

DOI:
https://doi.org/10.1090/S0002-9939-96-03505-8

MathSciNet review:
1343709

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if is a finite vector space, and is a subgroup of having the same orbit sizes on 1-spaces as an orthogonal or unitary group on , then, with a few exceptions, is itself an orthogonal or unitary group on .

**[Ab]**S. Abhyankar, ``Again nice equations for nice groups'', Proc. Amer. Math. Soc.**124**(1996), 3567--3576.**[As]**M. Aschbacher, ``On the maximal subgroups of the finite classical groups'',*Invent. Math.***76**(1984), 469-514. MR**86a:20054****[At]**J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson,*Atlas of finite groups*, Oxford University Press, 1985. MR**88g:20025****[FK]**D.A. Foulser and M.J. Kallaher, ``Solvable, flag-transitive, rank 3 collineation groups'',*Geom. Ded.***7**(1978), 111-130. MR**57:12263****[GPPS]**R. Guralnick, T. Penttila, C.E. Praeger and J. Saxl, ``Linear groups with orders having certain primitive prime divisors'', preprint, University of Western Australia, 1994.**[He]**C. Hering, ``Transitive linear groups and linear groups which contain irreducible subgroups of prime order'',*Geom. Ded.***2**(1974), 425-460. MR**49:439****[At2]**C. Jansen, K. Lux, R.A. Parker and R.A. Wilson,*Atlas of modular characters*, Oxford University Press, 1995.**[JP]**W. Jones and B. Parshall, ``On the 1--cohomology of finite groups of Lie type'',*Proc. Conf. on Finite Groups*, eds. W. Scott and F. Gross, Academic Press, (1976). MR**53:8272****[Kl]**P.B. Kleidman,*The subgroup structure of some finite simple groups*, Ph.D. Thesis, University of Cambridge, 1987.**[KL]**P.B. Kleidman and M.W. Liebeck,*The Subgroup Structure of the Finite Classical Groups*, London Math. Soc. Lecture Note Series**129**, Cambridge University Press, Cambridge, 1990. MR**91g:20001****[Li]**M.W. Liebeck, ``The affine permutation groups of rank three'',*Proc. London Math. Soc.***54**(1987), 477-516. MR**88m:20004****[LPS]**M.W. Liebeck, C.E. Praeger and J. Saxl, ``The maximal factorizations of the finite simple groups and their automorphism groups'',*Mem. Amer. Math. Soc.***86**, No. 432 (1990), 1-151. MR**90k:20048****[Zs]**K. Zsigmondy, ``Zur Theorie der Potenzreste'',*Monatsh. fur Math. und Phys.***3**(1892), 265--284.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
20G40

Retrieve articles in all journals with MSC (1991): 20G40

Additional Information

**Martin W. Liebeck**

Affiliation:
Department of Mathematics, Imperial College, London SW7 2BZ, United Kingdom

Email:
m.liebeck@ic.ac.uk

DOI:
https://doi.org/10.1090/S0002-9939-96-03505-8

Received by editor(s):
March 20, 1995

Communicated by:
Ronald M. Solomon

Article copyright:
© Copyright 1996
American Mathematical Society