Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A general coincidence theorem
on contractible spaces


Authors: Sehie Park and Kwang Sik Jeong
Journal: Proc. Amer. Math. Soc. 124 (1996), 3203-3206
MSC (1991): Primary 47H10, 49A40, 54C60; Secondary 54H25, 55M20
DOI: https://doi.org/10.1090/S0002-9939-96-03513-7
MathSciNet review: 1343718
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain a general coincidence theorem for multifunctions in very large classes defined on contractible spaces. Our theorem generalizes a recent result due to Tarafdar and Yuan (1994) and many other earlier works including the Fan-Browder fixed point theorem.


References [Enhancements On Off] (What's this?)

  • [Br] F. E. Browder, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann. 177 (1968), 283--301. MR 37:4679
  • [BI] H. Ben-El-Mechaiekh and A. Idzik, A Leray-Schauder type theorem for approximable maps, Proc. Amer. Math. Soc. 122 (1994), 105--109. MR 94k:54074
  • [F] Ky Fan, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961), 305--310. MR 24:A1120
  • [H] C. Horvath, Contractibility and generalized convexity, J. Math. Anal. Appl. 156 (1991), 341--357. MR 92f:52002
  • [L] M. Lassonde, On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl. 97 (1983), 151--201. MR 84k:47049
  • [P1] Sehie Park, On minimax inequalities on spaces having certain contractible subsets, Bull. Austral. Math. Soc. 47 (1993), 25--40. MR 94a:49005
  • [P2] ------, Coincidences of composites of admissible u.s.c. maps and applications, Math. Rep. Acad. Sci. Canada 15 (1993), 125--130. MR 94f:47071
  • [P3] ------, Fixed point theory of multifunctions in topological vector spaces, II, J. Korean Math. Soc. 30 (1993), 413--431. MR 94g:47074
  • [P4] ------, Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps, J. Korean Math. Soc. 31 (1994), 493--519. MR 95i:47104
  • [P5] ------, Generalized Leray-Schauder principles for compact admissible multifunctions, Top. Meth. Nonlinear Anal. 5 (1995), 271--277.
  • [PK1] S. Park and H. Kim, Admissible classes of multifunctions on generalized convex spaces, Proc. Coll. Natur. Sci., Seoul Nat. U. 18 (1993), 1--21.
  • [PK2] ------, Coincidences of composites of u.s.c. maps on $H$-spaces and applications, J. Korean Math. Soc. 32 (1995), 251--264. CMP 95:14
  • [PSW] S. Park, S. P. Singh, and B. Watson, Some fixed point theorems for composites of acyclic maps, Proc. Amer. Math. Soc. 121 (1994), 1151--1158. MR 94j:47089
  • [TY] E. Tarafdar and X.-Z. Yuan, A remark on coincidence theorems, Proc. Amer. Math. Soc. 122 (1994), 957--959. MR 95a:47066

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 47H10, 49A40, 54C60, 54H25, 55M20

Retrieve articles in all journals with MSC (1991): 47H10, 49A40, 54C60, 54H25, 55M20


Additional Information

Sehie Park
Affiliation: Department of Mathematics, Seoul National University, Seoul 151–742, Korea
Email: shpark@math.snu.ac.kr.

Kwang Sik Jeong
Affiliation: Department of Mathematics, Soong Sil University, Seoul 156-743, Korea

DOI: https://doi.org/10.1090/S0002-9939-96-03513-7
Keywords: Multifunction (map), $H$-space, $c$-space, u.s.c. map, Kakutani map, acyclic map, approximable map, admissible map, contractible, $\infty $-proximally connected, compactly open
Received by editor(s): April 11, 1995
Additional Notes: Supported in part by Ministry of Education, 1995, Project Number BSRI-95-1413.
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society