Multiple geometrically distinct closed noncollision orbits of fixed energy for Nbody type problems with strong force potentials
Author:
Zhang Shiqing
Journal:
Proc. Amer. Math. Soc. 124 (1996), 30393046
MSC (1991):
Primary 34C25, 34C15, 58F05
MathSciNet review:
1371142
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Using the equivariant LjusternikSchnirelmann theory, we prove that there are at least geometrically distinct noncollision orbits with prescribed energy for a class of planar Nbody type problems with strong force potentials.
 [1]
A.
Ambrosetti and V.
Coti Zelati, Closed orbits of fixed energy for a class of
𝑁body problems, Ann. Inst. H. Poincaré Anal. Non
Linéaire 9 (1992), no. 2, 187–200
(English, with French summary). MR 1160848
(93e:58156a)
 [2]
A.
Bahri and P.
H. Rabinowitz, Periodic solutions of Hamiltonian systems of 3body
type, Ann. Inst. H. Poincaré Anal. Non Linéaire
8 (1991), no. 6, 561–649. MR 1145561
(92k:58223)
 [3]
Ugo
Bessi and Vittorio
Coti Zelati, Symmetries and noncollision closed orbits for planar
𝑁bodytype problems, Nonlinear Anal. 16
(1991), no. 6, 587–598. MR 1094320
(92a:70006), http://dx.doi.org/10.1016/0362546X(91)900305
 [4]
Vittorio
Coti Zelati, A class of periodic solutions of the 𝑁body
problem, Celestial Mech. Dynam. Astronom. 46 (1989),
no. 2, 177–186. MR 1044425
(91c:58116), http://dx.doi.org/10.1007/BF00053047
 [5]
Vittorio
Coti Zelati, Periodic solutions for 𝑁body type
problems, Ann. Inst. H. Poincaré Anal. Non Linéaire
7 (1990), no. 5, 477–492 (English, with French
summary). MR
1138534 (93a:70009)
 [6]
E.
Fadell and S.
Husseini, Infinite cup length in free loop spaces with an
application to a problem of the 𝑁body type, Ann. Inst. H.
Poincaré Anal. Non Linéaire 9 (1992),
no. 3, 305–319 (English, with French summary). MR 1168305
(94a:58034)
 [7]
William
B. Gordon, Conservative dynamical systems
involving strong forces, Trans. Amer. Math.
Soc. 204 (1975),
113–135. MR 0377983
(51 #14152), http://dx.doi.org/10.1090/S00029947197503779831
 [8]
E.
W. C. van Groesen, Analytical minimax methods for Hamiltonian
brake orbits of prescribed energy, J. Math. Anal. Appl.
132 (1988), no. 1, 1–12. MR 942350
(89m:58062), http://dx.doi.org/10.1016/0022247X(88)90039X
 [9]
P. Majer and S. Terracini, Periodic solutions to some Nbody type problems, preprint, 1992.
 [10]
Paul
H. Rabinowitz, Minimax methods in critical point theory with
applications to differential equations, CBMS Regional Conference
Series in Mathematics, vol. 65, Published for the Conference Board of
the Mathematical Sciences, Washington, DC; by the American Mathematical
Society, Providence, RI, 1986. MR 845785
(87j:58024)
 [11]
Enrico
Serra and Susanna
Terracini, Collisionless periodic solutions to some threebody
problems, Arch. Rational Mech. Anal. 120 (1992),
no. 4, 305–325. MR 1185563
(93i:70013), http://dx.doi.org/10.1007/BF00380317
 [12]
Enrico
Serra and Susanna
Terracini, Noncollision solutions to some singular minimization
problems with Keplerianlike potentials, Nonlinear Anal.
22 (1994), no. 1, 45–62. MR 1256169
(94m:58091), http://dx.doi.org/10.1016/0362546X(94)900043
 [13]
Carl
Ludwig Siegel and Jürgen
K. Moser, Lectures on celestial mechanics, SpringerVerlag,
New YorkHeidelberg, 1971. Translation by Charles I. Kalme; Die Grundlehren
der mathematischen Wissenschaften, Band 187. MR 0502448
(58 #19464)
 [14]
S. Q. Zhang, Multiple closed orbits of fixed energy for Nbodytype problems with gravitational potentials, preprint.
 [1]
 A. Ambrosetti and V. Coti Zelati, Closed orbits of fixed energy for a class of Nbody problems, Ann. IHP Analyse Nonlineaire 9 (1992), 187200. MR 93e:58156a
 [2]
 A. Bari and P. H. Rabinowitz, Periodic solutions of Hamiltonian systems of body type, Ann. IHP Analyse Nonlineaire 8 (1991), 561649. MR 92k:58223
 [3]
 U. Bessi and V. Coti Zelati, Symmetries and noncollision closed orbits for planar Nbody type problems, J. Nonlinear Anal. T.M.A. 16 (1991), 587598. MR 92a:70006
 [4]
 V. Coti Zelati, A class of periodic solutions of the Nbody problem, Celestial Mech. 46 (1989), 177186. MR 91c:58116
 [5]
 , The periodic solutions of Nbody type problems, Ann. IHP Analyse Nonlineaire 7 (1990), 477492. MR 93a:70009
 [6]
 E. Fadell and S. Husseini, Infinite cuplength in free loop spaces with an application to a problem of the Nbody type, Ann. IHP Analyse Nonlineaire 9 (1992), 305319. MR 94a:58034
 [7]
 W. Gordon, Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc. 204 (1975), 113135. MR 51:14152
 [8]
 E. W. C. Van Groesen, Analytical minmax methods for Hamiltonian break orbits of prescribed energy, J. Math. Anal. Appl. 132 (1988), 112. MR 89m:58062
 [9]
 P. Majer and S. Terracini, Periodic solutions to some Nbody type problems, preprint, 1992.
 [10]
 P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, C.B.M.S. Reg. Conf. Ser. in Math. 65 (1986). MR 87j:58024
 [11]
 E. Serra and S. Terracini, Noncollision solutions to some threebody problems, Arch. Rational Mech. Anal. 120 (1992), 305325. MR 93i:70013
 [12]
 , Noncollision solutions to some singular minimization problems with Keplerianlike potentials, Nonlinear Analysis T.M.A. 22 (1994), 4562. MR 94m:58091
 [13]
 C. L. Siegel and K. Moser, Lectures on celestial mechanics, SpringerVerlag, 1971. MR 58:19464
 [14]
 S. Q. Zhang, Multiple closed orbits of fixed energy for Nbodytype problems with gravitational potentials, preprint.
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
34C25,
34C15,
58F05
Retrieve articles in all journals
with MSC (1991):
34C25,
34C15,
58F05
Additional Information
Zhang Shiqing
Affiliation:
Department of Applied Mathematics, Chongqing University, Chongqing 630044, People’s Republic of China
Email:
cul@cbistic.sti.ac.cn
DOI:
http://dx.doi.org/10.1090/S0002993996037513
PII:
S 00029939(96)037513
Keywords:
Nbody type problems with fixed energy,
geometrically distinct noncollision periodic orbits,
equivariant LjusternikSchnirelmann theory
Received by editor(s):
January 11, 1995
Communicated by:
James Glimm
Article copyright:
© Copyright 1996
American Mathematical Society
