ON THE SET OF TOPOLOGICALLY INVARIANT MEANS ON
AN ALGEBRA OF CONVOLUTION OPERATORS ON $L^p(G)$

EDMOND E. GRANIRER

(Communicated by Dale E. Alspach)

Abstract. Let G be a locally compact group, $A_p = A_p(G)$ the Banach algebra defined by Herz; thus $A_2(G) = A(G)$ is the Fourier algebra of G. Let $PM_p = A_p^*$ the dual, $J \subset A_p$ a closed ideal, with zero set $F = Z(J)$, and $F = (A_p/J)^*$. We consider the set $TIM_p(x) \subset F^*$ of topologically invariant means on F at $x \in F$, where F is “thin.” We show that in certain cases $TIM_p(x) \geq 2^c$ and $TIM_p(x)$ does not have the WRNP, i.e. is far from being weakly compact in F^*. This implies the non-Arens regularity of the algebra A_p/J.

Introduction

Let G be a locally compact group with unit e and left Haar measure dx. Let $A_p(G) = A_p$, the Figa-Talamanca-Gaudry-Herz algebra of G (see [Hz] or [Gr3], [Gr4]), thus $A_2(G) = A(G)$ is the Fourier algebra of G as in [Ey1].

Let $PM_p = PM_p(G) = A_p^*$, $PM_2 = PM_2(G) = A(G)^*$ their Banach space duals (thus algebras of left convolution operators on $L^p(G)$). PM_p is an A_p module via $(u \cdot \phi, v) = (\phi, uv)$ for $u,v \in A_p$.

If $\phi \in PM_p$ let supp $\phi \subset G$ denote its support (see sequel). If $F \subset PM_p$ is a closed subspace, let $\sigma(F) = \{ x \in G; \lambda \delta_x \in F \}$, where for any bounded Borel measure on G let $\lambda \mu \in PM_p$ be given by $(\lambda \mu, v) = \int v d\mu$ for $v \in A_p$, and δ_x be the point mass at x. Denote $E_\phi(x) = ncl \{ \phi \in F; x \notin \text{supp} \phi \}$ (ncl=norm closure) and $F_e = ncl \{ \phi \in F; \text{supp} \phi \text{ is compact} \}$.

If $x \in \sigma(F)$ let $TIM_p(x) = \{ \psi \in F^*; 1 = (\psi, \lambda \delta_x) = ||\psi||, \psi = 0 \text{ on } E_\phi(x) \}$. Prop. 1 of [Gr3], p. 42 shows that this definition is consistent with [Gr3], p. 39.

Our main interest in this paper is in this set. Ching Chou has proved in [Ch2] that if G is second countable nondiscrete and $F = PM_2(G)$, then $TIM_p(e) = 2^c$, where c is the cardinality of R, the real line. This result has been definitively improved by Zhiguo Hu [Hu] who found the exact cardinality of $TIM_p(e)$ for an arbitrary G and $F = PM_2(G)$. The method of proof in both results is C^* algebraic and does not apply if $p \neq 2$.

We have proved in [Gr2], Theorem 2.7 that for any $1 < p < \infty$, if G is second countable nondiscrete and $F = PM_p(G)$, then $TIM_p(e) = 2^c$ and $TIM_p(e)$
Theorem. Let $\mathbb{P} \subset PM_p(G)$ be a w^* closed A_p submodule, $\sigma(\mathbb{P}) = F$, $a, b \in G$. Assume that F is metrisable.

(a) If $x \in \text{int}_{aHb} F$ for some closed nondiscrete subgroup H, then $\text{card} \ TIM_{\mathbb{Q}}(x) \geq 2^c$, where $\mathbb{Q} = \mathbb{P}$ or \mathbb{P}_c.

(b) If $p = 2$, G contains R (or T) as a closed subgroup and $S \subset R$ is a symmetric set such that $x \in aSb \subset F$, then $\text{card} \ TIM_{\mathbb{Q}}(x) \geq 2^c$, where $\mathbb{Q} = \mathbb{P}_c$ or \mathbb{P}.

What happens if F is not metrisable? In particular what happens if G is non-metrisable, $F = G = H$, thus $\mathbb{P} = PM_p(G)$? Does, in this case, $TIM_F(e)$ contain at least two elements?

We answer this question, and much more, by improving the above results to nonmetrisable F, and showing that $TIM_F(x)$ does not have the WRNP, if x is as above.

The method of proof requires an impressive result of I. Zelmanov [Ze] which guarantees an adequate supply of nondiscrete metrisable subgroups in any nondiscrete G, and the above mentioned results of [Gr4]. Many thanks are due to Wistar Comfort for pointing out [Ze] to us. We will prove the

Theorem. Let \mathbb{P} be a w^* closed A_p submodule of $PM_p(G)$, $\sigma(\mathbb{P}) = F$, $a, b \in G$. Let $\mathbb{P}_c \subset \mathbb{Q} \subset PM_p(G)$ be any norm closed A_p submodule.

(a) If $1 < p < \infty$, H is a nondiscrete closed subgroup and $x \in \text{int}_{aHb} F$, then $\text{card} \ TIM_{\mathbb{Q}}(x) \geq 2^c$ and $TIM_{\mathbb{Q}}(x)$ does not have the WRNP.

(b) If $p = 2$, G contains R (or T) as a closed subgroup, $S \subset R$ (or T) is a symmetric set and $x \in aSb \subset F$, then $\text{card} \ TIM_{\mathbb{Q}}(x) \geq 2^c$ and $TIM_{\mathbb{Q}}(x)$ does not have the WRNP.

In particular, if $F = H = G$, $1 < p < \infty$ (thus $\mathbb{P} = PM_p(G)$), we get that $\text{card} \ TIM_F(x) \geq 2^c$ and $TIM_F(x)$ does not have the WRNP, for any nondiscrete G.

We also note that for any nondiscrete G there exists $\mathbb{P} \subset PM_p(G)$ as in the above theorem such that $\text{card} \ TIM_F(x) = 2^c$, hence the above estimate for $\text{card} \ TIM_F(x)$ cannot be improved.

Furthermore we show that if $J \subset A_p(G)$ is a closed ideal such that $Z(J) = F$ satisfies (a) or (b) of the above theorem, then the Banach algebra A_p/J is not Arens regular.

Some more notation: If $\mathbb{P} \subset PM_p(G)$, let $W_p(x) = C(\lambda\delta_x) + E_p(x)$, $x \in G$. If $\phi \in PM_p = A_p^*$, then $\text{supp} \phi$ is the set of $x \in G$ such that for any open $V \subset G$ with $x \in V$ there is some $v \in A_p$ such that $\text{supp} v \subset V$ and $(\phi, v) \neq 0$, [Hz]. For the definition of WRNP, see [Sa1] or [Gr2], p. 156. These, as well as other notations can be found in any of [Gr3], [Gr4] or [Hz].
The main results

Proposition 1. Every nonmetrisable locally compact group G contains an infinite compact abelian metrisable subgroup.

Proof. G contains a compact normal infinite subgroup N (see [HR] (8.7)). By E.I. Zelmanov’s impressive result ([Ze], Theorem 2) N contains an infinite abelian subgroup whose closure A is a compact abelian infinite subgroup. Now by Rudin’s Theorem 7 ([Ru3], p. 203) A contains an infinite compact metrisable subgroup. □

Corollary 2. Let G be a nondiscrete locally compact group. Then G contains a separable metric nondiscrete closed subgroup.

Proof. If G is metrisable, let $x_n \in G$ be distinct and such that $x_n \to e$. Let H be the closed subgroup generated by $\{x_n\}$. □

Proposition 3. Let $\mathbb{P} \subset \mathbb{R}$ be norm closed $A_p(G)$ submodules of $PM_p(G)$ such that $a \in \sigma(\mathbb{P})$. Then any $\psi \in TIM_p(a)$ has an extension $\psi_0 \in TIM_R(a)$.

Proof. Let $\psi_1 \in \mathbb{R}^*$ be a norm preserving extension of ψ, by Hahn-Banach. Then $1 = \|\psi_1\| = \|\psi\| = (\psi, \Lambda_\alpha) = (\psi_1, \Lambda_\alpha)$ since $\Lambda_\alpha \in \mathbb{P} \subset \mathbb{R}$. Let now $S = S(a) = \{u \in A_p; 1 = \|u\| = u(a)\}$. Then pointwise multiplication in A_p renders $S(a)$ into an abelian semigroup as readily checked. Let $M \in L^\infty(S)^*$ be a translation invariant mean. Define $\psi_0 \in \mathbb{R}^*$ by $\psi_0 = M(\psi_1, u \cdot \phi)$, where $(\psi_1, u \cdot \phi)$ is considered as a bounded function on S (i.e. in $L^\infty(S)$). It is now routine to check that $(\psi_0, v \cdot \phi) = (\psi_0, \phi)$ for all $v \in S(a)$ and $\phi \in \mathbb{R}$. Now, by [Gr3], Proposition 1, $\psi_0 \in TIM_R(a)$ is the required extension. □

Corollary 4. $\text{card} TIM_R(a) \geq \text{card} TIM_p(a)$. Furthermore, if $TIM_p(a)$ fails to have the WRNP, then so does $TIM_R(a)$.

Proof. Let $i : \mathbb{P} \to \mathbb{R}$ be the canonical imbedding. If $TIM_R(a)$ has the WRNP, then by E. Saab’s Corollary 2 ([Sa1], p. 310), $i^*TIM_R(a) = TIM_p(a)$ also has the WRNP, which cannot be. □

The following is folklore.

Proposition 5. Let X, Y be Banach spaces and $W_1 \subset W_2 \subset X$ closed subspaces and $Y_0 \subset Y$ a finite dimensional subspace. Let $q : Y \to Y/Y_0$, $p_j : X \to X/W_j$ be the canonical maps. (a) If p_2 is not weakly compact, then p_1 is not weakly compact; (b) If $t : X \to Y$ is a nonweakly compact operator, then $qt : X \to Y/Y_0$ is not weakly compact.

Proof. (a) Let $p_3 : X/W_1 \to X/W_2$ be the canonical map. If p_1 is weakly compact, then so is $p_2 = p_3p_1$. (b) There is a closed subspace Y_1, such that $Y = Y_0 \oplus Y_1$, thus $Y/Y_0 \cong Y_1$. Thus $q[I - q]$ is the projection on Y_1/Y_0 resp. and $I - q$ is weakly compact. If qt is weakly compact, so is $t = qt + (I - q)t$ which cannot be. □

Theorem 6. Let G be any locally compact group and $\mathbb{P} \subset PM_p(G)$ a w^* closed A_p submodule with $F = \sigma(\mathbb{P})$. Assume that for some nondiscrete closed subgroup H and $a, b \in G$, $\text{int}_{aHb}F \neq \emptyset$. If $x \in \text{int}_{aHb}F$, then $\text{card} TIM_Q(x) \geq 2^c$ and $TIM_Q(x)$ does not have the WRNP, for any norm closed A_p module Q such that $\mathbb{P}_c \subset Q \subset PM_p(G)$.
Remarks. (1) If \(F \) is metrisable, then our Corollary 7 of [Gr4] implies part of the above theorem. The above is an improvement in that \(F \) need not be metrisable.

In particular one can take for an arbitrary nondiscrete locally compact group \(G = H = F \) and get that \(\mathbb{P} = PM_p(G) \) satisfies \(TIM_p(x) \geq 2^c \) and \(TIM_p(x) \) does not have the WRNP (a fortiori is not weakly compact in \(PM_p(G)^* \)) for any \(x \in G \).

If \(p \neq 2 \) this is a new result. The \(C^* \) algebra methods of Z. Hu in [Hu] do not seem to work in this case.

(2) One cannot improve the cardinality estimate of Theorem 6. For assume that \(1 < p < \infty \), and \(G \) is an arbitrary nondiscrete locally compact group. Then by Corollary 2 \(G \) contains a closed separable metrisable nondiscrete subgroup \(H \). By Herz’s theorem [Hz], p. 92 the restriction map \(r : A_p(G) \to A_p(H) \) is onto and \(|r| \leq 1 \). Hence \(r*PM_p(H) = \mathbb{P} \) is norm closed and by Theorem 4.14 in [Ru1], \(\mathbb{P} \) is \(w^* \)-closed. \(\mathbb{P} \) is an \(A_p \) module, since \((\cdot v)*\phi, u) = (r*[(rv)*\phi], u) \) and \(\sigma(\mathbb{P}) \subset H \), see [Hz]. But \(\sigma(\mathbb{P}) = H \) since if \(x \in H \) and \(\phi = \lambda \delta_x \in PM_p(H) \), then \(r*\phi = \delta_x \in \mathbb{P} \).

Now \(A_p(H) \) is norm separable since \(H \) is separable metric. Since \(r* \) is an isometry into (see [Hz], p. 91), \(PM_p(H) = \mathbb{P} \), \(\mathbb{P} \subset H \). Hence \(\mathbb{P} = \mathbb{P}_1 \subset \beta \mathbb{P} \). We can apply now our Theorem 6 to \(\mathbb{P} \subset PM_p(G) \), \(\sigma(\mathbb{P}) = H = F \) and \(a = b = c \) and get that \(2^c \geq \mathbb{P} = \mathbb{P}_1 = card TIM_p(x) \geq 2^c \) for all \(x \in H \). Thus \(card TIM_p(x) = 2^c \).

Proof. Let \(V \subset G \) be open such that \(V \) is compact and \(x \in V \cap ahHb \subset F \). Let, by Corollary 2, \(H_0 \) be a nondiscrete separable closed metrisable subgroup of \(G \).

Then \(x = abh \) for some \(h \in H \). Thus \(x \in V \cap ahHb \subset V \cap ahHb \subset F \). Let \(F_0 = cl(V \cap ahHb) \), a compact metrisable subset of \(F \). If \(c = abh \), then \(x \in \int_{ahHb} F_0 \) since \(x \in V \cap chHb \subset F_0 \). Let \(F_0 = w^* \text{cl} \{\lambda \delta_x; x \in F_0 \}, F_1 = w^* \text{cl} \{\lambda \delta_x; x \in F \} \) where \(cl \) denotes closure and \(\text{lin}, \text{linear span} \). Then \(F_0 \subset \subset F_0 \subset F_1 \subset F \), since \(F_0 \) is compact and since \(F_1 \) is the smallest \(w^* \)-closed \(A_p \) module with \(\sigma(F_1) = F \), [Hz].

Apply now our Theorem 3 of [Gr4] to \(F_0 \), the metrisable set \(F_0 \) and the closed nondiscrete group \(H_0 \). Then \(\sigma(F_0) = F_0 \), \(x \in \int_{chHb} F_0 \), thus \(x \in D_1(J_0) \) (see [Gr4] where \(J_0 = \{u \in A_p; (\phi, u) = 0, \text{for } \phi \in F_0\} \), a closed ideal such that \(F_0 = (A_p/J_0)^* \). By Theorem 4 of [Gr4] we get that there is some onto operator \(t : F_0 \to \ell^\infty \) (thus \(t* \) is \(w^*-w^* \)-norm isomorphism) such that \(t*F \subset TIM_p(x) \) where \(F = \{\eta \in \ell^\infty*; 1 = (\eta, 1) = ||\eta|| \text{ and } \eta = 0 \text{ on } c_0\} \).

Let now \(\beta N \) be the Stone-Čech compactification of the positive integers \(N \). Then \(\beta N \sim N \subset F \) is a \(w^* \)-perfect set of cardinality \(2^c \) (see [Ru1], p. 204). Thus \(\Gamma = t*(\beta N \sim N) \) is a \(w^* \)-perfect subset of \(TIM_p(x) \) and \(card TIM_p(x) \geq 2^c \).

But \(\Gamma \) is isomorphic to a canonical \(\ell^1 \) basis, i.e. there is some \(d > 0 \) such that \(\sum |a/i| \geq \sum |a_1^i \delta_i \phi_1| \geq d \sum |a_1| \) for all \(n \geq 1, a_1 \in C \) and distinct \(\phi_1, \ldots, \phi_n \in \beta N \sim N \). To prove this it is enough (since \(||t|| \leq 1 \) and \(t^* \) is a norm isomorphism into) to show that \(\sum |a_1| = ||\sum a_1 \delta_1 \phi_1|| \). Now \(\ell^\infty = C(\beta N) \), hence there is some \(f \in C(\beta N) \) such that \(||f|| = 1 \) and \(f(\delta_1) = 1/|a_1| \). Thus \(\sum a_1 \delta_1 \phi_1 = \sum |a_1| \leq ||\sum |a_1| \delta_1 | \). It follows that the \(w^* \) compact set \(TIM_p(x) \) contains a \(w^* \)-perfect set which is isomorphic to a canonical \(\ell^1 \) basis. Hence by our Lemma 1.2 on p. 157 in [Gr2], \(TIM_p(x) \) does not have the WRNP. To get the result about \(TIM_Q(x) \) apply Corollary 4.

With a view to future applications, we have under the assumptions of Theorem 6:

Corollary 6. Let \(W \subset W_0(x) \) be any closed subspace. Then the canonical map \(q : Q \to Q/W \) is not a weakly compact operator, for any \(x \in \int_{ahHb} F \).
Proof. By Proposition 5(a) we can assume that $W = W_0(x)$. Since $\mathbb{Q}/W_0(x) = (\mathbb{Q}/E_0(x))/\mathbb{C}(\lambda_\delta_x)$ and by Proposition 5(b) we need only show that the canonical map $q : \mathbb{Q} \to \mathbb{Q}/E_0(x)$ is not weakly compact. If q is weakly compact, then so is $q^* : (\mathbb{Q}/E_0(x))^* \to \mathbb{Q}^*$. But then \(\{ \psi \in \mathbb{Q}^* : ||\psi|| \leq 1 \text{ and } \psi = 0 \text{ on } E_0(x) \} \) and a fortiori $TIM_0(x)$ is a weakly relatively compact subset of \mathbb{Q}^*. But $TIM_0(x)$ is w^*, hence weakly, closed. Thus $TIM_0(x)$ is weakly compact and a fortiori has the WRNP. This cannot be by Theorem 6.

We do not know if the next theorem holds for $p \neq 2$.

Theorem 7. Let G be a locally compact group, and $\mathbb{P} \subset PM_2(G)$ a w^* closed $A_2(G)$ module with $F = \sigma(\mathbb{P})$, $a,b \in G$. Assume that R (or T) is a closed subgroup of G and $S \subset R$ (or T) is a symmetric set such that $aSb \subset F$. If $x \in aSb$, then $card TIM_0(x) \geq 2^c$ and $TIM_0(x)$ does not have the WRNP for any norm closed $A_2(G)$ module \mathbb{Q} such that $\mathbb{P} \subset \mathbb{Q} \subset PM_2(G)$.

Remarks. If F is metrisable, then Corollary 6 of [Gr4] implies the fact that $card TIM_0(x) \geq 2^c$.

Proof. S is a compact subset of R, since the map $t : \prod_{i=1}^{\infty} D_i \to S$, $D_i = \{ 0,1 \}$, $tc = \sum_{i=1}^{\infty} \varepsilon_i t_i$, is continuous. Let $F_0 = aSb$, a compact metrisable subset of aRb, hence of G. Let $\mathbb{P}_0 = w^* \text{ cl lin } \{ \lambda \delta_x : x \in F_0 \}$. Then since $\sigma(\mathbb{P}_0) = F_0$, $\mathbb{P}_0 \subset \mathbb{P}$. We can apply Corollary 2' of [Gr4] with F_0 instead of F and get that $x \in D_1(J_0)$, where $J_0 = \{ u \in \mathbb{A}(G) : \phi(u) = 0 \text{ for } \phi \in \mathbb{P}_0 \}$. Hence by [Gr4], Theorem 4, there is an onto operator $t : \mathbb{P}_0/\mathbb{W}_0(x) \to F^\infty$ such that $t^*F \subset TIM_0(x)$. The proof of Theorem 6 shows that card $TIM_0(x) \geq 2^c$ and $TIM_0(x)$ does not have the WRNP. Apply now Corollary 4 to Q.

Remarks. (1) Theorem 7 holds true if $S = \bigcup_{\alpha \in I}(x_\alpha + S_\alpha)$, where $x_\alpha \in R$, S_α or $-S_\alpha$ are ultrathin symmetric and I is any index set. Symmetric sets are such. This holds since Corollary 2' of [Gr4] holds for such sets S.

(2) If $F = G$ thus $\mathbb{P} = PM_2(G)$ and $x = e$, a much better and definitive result on card $TIM_0(e)$ has been obtained by Zhiguo Hu [Hu].

(3) One cannot improve the cardinality estimate of Theorem 7. Indeed, R (or T) is a closed subgroup of the otherwise arbitrary group G. Thus R (or T) is a set of synthesis for G (see [Hz]). Thus $PM_2(R)$ (or $PM_2(T)$) can be identified with $\mathbb{P}_1 = \{ \phi \in PM_2(G) : \text{ supp } \phi \subset R \}$, a w^* closed $A_2(G)$ submodule of $PM_2(G)$ with $F = \sigma(\mathbb{P}_1) = R$ (or T), see [Hz]. Thus $\mathbb{P}_1 = L_\infty(R)$ (or $\mathbb{P}_1 \approx L_\infty$). Now let $F = aSb$ and $\mathbb{P} = w^* \text{ cl lin } \{ \lambda \delta_x : x \in aSb \}$. Then $\mathbb{P} \subset \mathbb{P}_1$ and card $\mathbb{P} \leq \text{ card } \mathbb{P}_1 = c$. But Theorem 7 implies $2^c \leq \text{ card } TIM_0(x) \leq \text{ card } \mathbb{P}^* \leq \text{ card } \mathbb{P}_1^* = 2^c$ for all $x \in aSb$.

Corollary 7'. With assumptions as in Theorem 7 let $W \subset W_0(x)$ be any closed subspace. Then the canonical map $q : \mathbb{Q} \to \mathbb{Q}/W$ is not a weakly compact operator, for any $x \in aSb$.

Proof. See the proof of Corollary 6'.

Corollary 8. Let $J \subset A_p(G)$ be a closed ideal, $F = Z(J) = \{ x \in G : v(x) = 0 \text{ for } v \in J \}$, $a,b \in G$. Assume one of the following:

(a) For some nondiscrete closed subgroup $H \subset G$, $\text{ int}_aHbF \neq \emptyset$ or

(b) $p = 2$, G contains R (or T) as a closed subgroup, $S \subset R$ (or T) is a symmetric set such that $aSb \subset F$.

Then A_p/J is a Banach algebra which is not Arens regular.
Proof. Let $\mathcal{P} = (A/J)^*$. Then $W = WAP(\mathcal{P}) \subset W_\mathcal{P}(x)$ for $x \in \interact_{\mathcal{A}_\mathcal{H}}(x \in aSb)$, respectively, by [Gr4], Proposition 5. But then $q : \mathcal{P} \to \mathcal{P}/W$ is not weakly compact, thus clearly $\mathcal{P}/W \neq \{0\}$. Hence A/J is not Arens regular.

Remarks. (1) As shown by J.P. Kahane, there exist perfect sets $F \subset G = T$ (and even continuous curves F in $Lip_\beta, \beta < 1$ in $G = R^2$) such that $A(G)/IF = A(F) = C(F)$, an Arens regular Banach algebra, where $IF = \{v \in A(G); v = 0 \text{ on } F\}$. If $\mathcal{P} = A(F)^*$, one has in this case, card $TIM_\mathcal{P}(x) = 1$ for all $x \in F$ (see [Gr3], p. 56–57).

(2) If J satisfies the conditions of Corollary 8 and G is second countable, then A_p/J is even an extremely non-Arens regular (ENAR) Banach algebra, i.e. there is a closed subspace of $\mathcal{P}/WAP(\mathcal{P})$ which has \mathcal{P} as a quotient. We do not know if this is the case if G is not second countable.

The Abelian Case

If G is abelian (l.c.a.), the above results have implications on translation invariant (tr. inv.) subspaces $P \subset L^\infty(\hat{G})$. Denote $L^\infty(\hat{G}) = L^\infty, L^1(\hat{G}) = L^1, UC$ the uniformly continuous functions in $L^\infty, UC_P = UC \cap P, \overline{P} = \{f; f \in P\}$ and $\sigma(P) = \overline{P} \cap G$, where $G \subset L^\infty$ (are the continuous characters on \hat{G}). Let $M_P(x) = \{\psi \in P^*; 1 = \|\psi\| = (\psi, \pi)\}$. Let $TIM_P(x) = \{\psi \in M_P(x); (\psi, f) = (\psi, \pi h) * f\}$ if $f \in P, 0 \leq h \leq L^1, \int h d\chi = 1$ and $IM_P(x) = \{\psi \in M_P(x); (\psi, f) = x(\chi)(\psi, f_\chi)\}$ for $\chi \in \hat{G}$, $f \in P\}$, where $f_\chi(\gamma) = f(\chi \gamma)$. Recall that by Proposition 9 in [Gr4], $IM_Q(x) \subset TIM_Q(x)$ with equality if $Q \subset UC$.

Corollary 9. Let G be l.c.a., $P [Q]$ be w^* [norm] closed tr. inv. subspaces of L^∞ such that $UC_P \subset Q \subset L^\infty, F = \sigma(P), a \in G$. Assume that either

(a) for some nondiscrete closed subgroup $H \subset G, int_{\mathcal{A}_H} F \neq \emptyset$ or
(b) G contains R (or T) as a closed subgroup, and $S \subset R$ (or T) is a symmetric set such that $aS \subset F$.

Then for any $x \in int_{\mathcal{A}_H} F \{x \in aS\} |card IM_Q(x) \geq card TIM_Q(x) \geq 2^c$ and both $IM_Q(x)$ and $TIM_Q(x)$ do not have the WRNP.

Proof. By [Sa1], p. 308 it is enough to prove the result for $TIM_Q(x)$. But by [Gr4] $F^* : L^\infty \to PM(G)^*$ is a norm and w^*-w^* linear homeomorphism such that $F^*TIM_Q(x) = TIM_Q(x)$, where $F^*Q = Q$ and $F : L^1 \to A(G)$ is Fourier transform (see [Gr4]). Then as in [Gr4] and by the above Theorem 6, 7, card $TIM_Q \geq 2^c$ and $TIM_Q(x)$ does not have the WRNP. Hence again by [Sa1], p. 308 the same holds for $TIM_Q(x)$.

Remarks. (1) The cardinality part of the above result is implied by Corollaries 10, 11 in [Gr4], in case F is metrisable.

(2) Let $F \subset R = G, \chi_t(x) = e^{itx}$ and $P_*\{F\} = w^* \text{ llin } \{\chi_t; t \in F\} \subset L^\infty(\hat{G})$.

(a) Assume that F is the Cantor 1/3 set; thus for $t_n = 2/3^n, F = \{\sum_{i=0}^\infty \varepsilon_i t_i; \varepsilon_i = 0, 1\}$, a symmetric set. Then for $t \in F$ and $P = P_\ast(F), TIM_P(t) = \{\psi \in P^*; 1 = \|\psi\| = (\psi, \pi_\chi), (\psi, f_\chi) = \chi_t(x)(\psi, f)\}$ for all $f \in P, x \in R\}$, where $f_\chi(y) = f(x+y)$, since F is compact and by [Gr4], Proposition 9. Then, since $|\text{card } L^\infty(R)^* = 2^c \geq |\text{card } TIM_P(t)|$, Corollary 9 yields that card $TIM_P(t) = 2^c$ and $TIM_P(t)$ does not have the WRNP for any $t \in F$. Note that if $t = 0$, then $TIM_P(0) = IM_P(0)$, the set of honest to goodness invariant means on P.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
(b) Assume that $F \subset R$ is a compact perfect Helson S set with $0 \in F$. There exist such by [He] (or see [Ru1]). In this case, with $P = P_r(F)$ we have that $\text{card} TIM_P(t) = 1$, and $TIM_P(t)$ contains one element, hence certainly has the WRNP, for all $t \in F$. In particular for $t = 0$, $\text{card} IM_P(0) = 1$, for the set of honest to goodness invariant means on P (see [Gr3]). The same is the case if $F \subset R$ is any scattered compact set, by Loomis' lemma [Lo].

Question: Does there exist a perfect set $F \subset R$ such that for $P = P_r(F)$, there is some t_0 in F for which $\text{card} TIM_P(t_0) = c$?

References

[Gr3] ________, *On convolution operators with small support which are far from being convolution by a bounded measure*, Colloq. Math. 67 (1994), 33–60. CMP 94:17

Department of Mathematics, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2

E-mail address: granirer@math.ubc.ca