Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Minimal upper bounds of commuting operators

Authors: Charles Akemann and Nik Weaver
Journal: Proc. Amer. Math. Soc. 124 (1996), 3469-3476
MSC (1991): Primary 47C15, 46L10
MathSciNet review: 1343677
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $(x_{i})$ be a finite collection of commuting self-adjoint elements of a von Neumann algebra $ \mathcal {M}$. Then within the (abelian) C*-algebra they generate, these elements have a least upper bound $x$. We show that within $ \mathcal {M}$, $x$ is a minimal upper bound in the sense that if $y$ is any self-adjoint element such that $x_{i} \leq y \leq x$ for all $i$, then $y = x$. The corresponding assertion for infinite collections $(x_{i})$ is shown to be false in general, although it does hold in any finite von Neumann algebra. We use this sort of result to show that if $ \mathcal {N} \subset \mathcal {M}$ are von Neumann algebras, $\Phi : \mathcal {M} \to \mathcal {N}$ is a faithful conditional expectation, and $x \in \mathcal {M}$ is positive, then $\Phi (x^{n})^{1/n}$ converges in the strong operator topology to the ``spectral order majorant'' of $x$ in $ \mathcal {N}$.

References [Enhancements On Off] (What's this?)

  • 1. T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues, Lin. Alg. Appl. 118 (1989), 163-248. MR 90g:15034
  • 2. W. Arveson, On groups of automorphisms of operator algebras, J. Funct. Anal. 15 (1974), 217-243. MR 50:1016
  • 3. L. G. Brown, Semicontinuity and multipliers of C*-algebras, Can. J. Math. 40 (1988), 865-988. MR 90a:46148
  • 4. J. Dixmier, Formes Linéaires sur un anneau d'opérateurs, Bull. de la Soc. Math. de France (1953), 9-39. MR 15:539a
  • 5. R. V. Kadison, Order properties of bounded self-adjoint operators, Proc. Amer. Math. Soc. 2 (1951), 505-510. MR 13:47c
  • 6. R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Volume II, Academic Press (1986). MR 88d:46106
  • 7. T. Kato, Spectral order and a matrix limit theorem, Linear and Multilinear Algebra 8 (1979), 15-19. MR 80j:47030
  • 8. A. Lambert, personal communication.
  • 9. M. P. Olson, The selfadjoint operators of a von Neumann algebra form a conditionally complete lattice, Proc. Amer. Math. Soc. 28 (1971), 537-544. MR 43:2528
  • 10. G. K. Pedersen, Power ordering of positive operators, Kobenhavns Universitet Matematisk Institut Preprint Series # 14 (1989).
  • 11. S. Sherman, Order in operator algebras, Amer. J. Math. 73 (1951)), 227-232. MR 13:47d
  • 12. M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, 1979. MR 81e:46038
  • 13. J. Tomiyama, On the projection of norm one in W*-algebras, Proc.Japan Acad. 33 (1957), 608-612. MR 20:2635
  • 14. M. Uchiyama, Powers and commutativity of selfadjoint operators, Math. Ann. 300 (1994), 643--647. MR 96a:47059

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 47C15, 46L10

Retrieve articles in all journals with MSC (1991): 47C15, 46L10

Additional Information

Charles Akemann
Affiliation: Department of Mathematics, University of California, Santa Barbara, California 93106

Nik Weaver
Affiliation: Department of Mathematics, University of California, Santa Barbara, California 93106

Received by editor(s): June 5, 1995
Additional Notes: This research was partially supported by NSF grant DMS-9424370.
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society