Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Combinatorics of a certain ideal
in the Segre coordinate ring

Authors: Paulo Brumatti, Philippe Gimenez and Aron Simis
Journal: Proc. Amer. Math. Soc. 124 (1996), 3285-3292
MSC (1991): Primary 13H10; Secondary 13C05, 13H15, 13P10
MathSciNet review: 1343683
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We focus on a ``fat'' model of an ideal in the class of the canonical ideal of the Segre coordinate ring, looking at its Rees algebra and related arithmetical questions.

References [Enhancements On Off] (What's this?)

  • [BV] W. Bruns and U. Vetter, Determinantal rings, Lecture Notes in Mathematics, Vol. 1327, Springer Verlag, Berlin--Heidelberg--New York, 1988. MR 89i:13001
  • [EiSt] D. Eisenbud and B. Sturmfels, Binomial Ideals, Duke Math. J. (to appear).
  • [Gim] Ph. Gimenez, Étude de la fibre spéciale de l'éclatement d'une variété monomiale en codimension deux, Thèse, Institut Fourier, 1993.
  • [HSV] J. Herzog, A. Simis and W. V. Vasconcelos, Koszul homology and blowing-up rings, Commutative Algebra, Lecture Notes in Pure and Applied Math., vol. 84, Marcel-Dekker, New York, 1983, pp. 79--169. MR 84k:13015
  • [Hu] C. Huneke, Powers of ideals generated by weak $d$-sequences, J. Algebra 68 (1981), 471--509. MR 82k:13003
  • [HuHu] S. Huckaba and C. Huneke, Powers of ideals having small analytic deviation, Amer. J. Math. 114 (1992), 367--403. MR 93g:13002
  • [HUT] J. Herzog, N. V. Trung and B. Ulrich, On the multiplicity of blow-ups rings of ideals generated by $d$-sequences, J. Pure and Appl. Algebra 80 (1992), 273--297. MR 93h:13004
  • [MoSi] M. Morales and A. Simis, Symbolic powers of monomial curves in ${\mathbb {P}}^{3}$ lying on a quadric surface, Comm. in Algebra 20(4) (1992), 1109--1122. MR 93c:13005
  • [Sch] P. Schenzel, Filtrations and noetherian symbolic blowup rings, Proc. Amer. Math. Soc. 102 (1988), 817--822. MR 89b:13029
  • [Stu] B. Sturmfels, Gröbner bases and Stanley decompositions of determinantal rings, Math. Z. 205 (1990), 137--144. MR 91m:14076
  • [STV] A. Simis, N. V. Trung and G. Valla, The diagonal subalgebra of a blowup algebra, J. Pure Appl. Algebra (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 13H10, 13C05, 13H15, 13P10

Retrieve articles in all journals with MSC (1991): 13H10, 13C05, 13H15, 13P10

Additional Information

Paulo Brumatti
Affiliation: IMECC, Universidade Estadual de Campinas, 13081-970 Campinas, São Paulo, Brazil

Philippe Gimenez
Affiliation: Departamento de Algebra, Geometria e Topologia, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid, Spain

Aron Simis
Affiliation: Universidade Federal da Bahia, Instituto de Matemática, Av. Ademar de Barros, s/n, 40170-210 Salvador, Bahia, Brazil

Keywords: Segre ring, monomials, Rees algebra, Cohen--Macaulay, polarization
Received by editor(s): April 25, 1995
Additional Notes: The first and the third authors were partially supported by CNPq. \endgraf The second author is grateful for the warm hospitality during his visit to Brazilian institutions. He thanks UniCamp and CDE (IMU) for providing resources for this visit.
Communicated by: Wolmer V. Vasconcelos
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society