Weak separation properties

for self-similar sets

Author:
Martin P. W. Zerner

Journal:
Proc. Amer. Math. Soc. **124** (1996), 3529-3539

MSC (1991):
Primary 54E40, 54H15; Secondary 28A78

MathSciNet review:
1343732

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We develop a theory for self-similar sets in that fulfil the weak separation property of Lau and Ngai, which is weaker than the open set condition of Hutchinson.

**[1]**Robert B. Ash,*Real analysis and probability*, Academic Press, New York-London, 1972. Probability and Mathematical Statistics, No. 11. MR**0435320****[2]**Christoph Bandt and Siegfried Graf,*Self-similar sets. VII. A characterization of self-similar fractals with positive Hausdorff measure*, Proc. Amer. Math. Soc.**114**(1992), no. 4, 995–1001. MR**1100644**, 10.1090/S0002-9939-1992-1100644-3**[3]**K. J. Falconer,*Dimensions and measures of quasi self-similar sets*, Proc. Amer. Math. Soc.**106**(1989), no. 2, 543–554. MR**969315**, 10.1090/S0002-9939-1989-0969315-8**[4]**Kenneth Falconer,*Fractal geometry*, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR**1102677****[5]**Michael Klemm,*Symmetrien von Ornamenten und Kristallen*, Springer-Verlag, Berlin-New York, 1982 (German). Hochschultext. MR**663004****[6]**K.-S. Lau and S.-M. Ngai,*Multifractal measures and a weak separation condition*, Adv. Math. (to appear).**[7]**J. Milnor,*A note on curvature and fundamental group*, J. Differential Geometry**2**(1968), 1–7. MR**0232311****[8]**Andreas Schief,*Separation properties for self-similar sets*, Proc. Amer. Math. Soc.**122**(1994), no. 1, 111–115. MR**1191872**, 10.1090/S0002-9939-1994-1191872-1**[9]**N. Smythe,*Growth functions and Euler series*, Invent. Math.**77**(1984), no. 3, 517–531. MR**759259**, 10.1007/BF01388836**[10]**Philip Wagreich,*The growth function of a discrete group*, Group actions and vector fields (Vancouver, B.C., 1981) Lecture Notes in Math., vol. 956, Springer, Berlin, 1982, pp. 125–144. MR**704992**, 10.1007/BFb0101514

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
54E40,
54H15,
28A78

Retrieve articles in all journals with MSC (1991): 54E40, 54H15, 28A78

Additional Information

**Martin P. W. Zerner**

Affiliation:
Departement Mathematik, ETH Zentrum, CH-8092 Zurich, Switzerland

Email:
zerner@math.ethz.ch

DOI:
http://dx.doi.org/10.1090/S0002-9939-96-03527-7

Keywords:
Self-similar sets,
fractals,
weak separation property

Received by editor(s):
April 11, 1995

Communicated by:
Christopher D. Sogge

Article copyright:
© Copyright 1996
American Mathematical Society