Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On spread and condensations


Author: A. V. Arhangelskii
Journal: Proc. Amer. Math. Soc. 124 (1996), 3519-3527
MSC (1991): Primary 54A25, 54C35, 54A35
DOI: https://doi.org/10.1090/S0002-9939-96-03605-2
MathSciNet review: 1353369
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A space $X$ has a property ${\mathcal {P}}$ strictly if every finite power of $X$ has ${\mathcal {P}}$. A condensation is a one-to-one continuous mapping onto. For Tychonoff spaces, the following results are established. If the strict spread of $X$ is countable, then $X$ can be condensed onto a strictly hereditarily separable space. If $s(C_{p}(X))\leq \omega $, then $C_{p}(X)$ can be condensed onto a strictly hereditarily separable space, and therefore, every compact subspace of $C_{p}(X)$ is strictly hereditarily separable. Under $(MA+\neg CH)$, if $G$ is a topological group such that $s(C_{p}(G))\leq \omega $, then $G$ is strictly hereditarily Lindelöf and strictly hereditarily separable.


References [Enhancements On Off] (What's this?)

  • 1. A. V. Arkhangel′skiĭ, Topological function spaces, Mathematics and its Applications (Soviet Series), vol. 78, Kluwer Academic Publishers Group, Dordrecht, 1992. Translated from the Russian by R. A. M. Hoksbergen. MR 1144519
  • 2. A. V. Arkhangel′skiĭ, On hereditarily Lindelöf spaces of continuous functions, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 3 (1989), 67–69 (Russian); English transl., Moscow Univ. Math. Bull. 44 (1989), no. 3, 67–69. MR 1029736
  • 3. A. V. Arhangel′skiĭ, The structure and classification of topological spaces and cardinal invariants, Uspekhi Mat. Nauk 33 (1978), no. 6(204), 29–84, 272 (Russian). MR 526012
  • 4. A. V. Arhangel′skiĭ, Spaces that are elongated to the left, Vestnik Moskov. Univ. Ser. I Mat. Meh. 5 (1977), 30–36 (Russian, with English summary). MR 0482689
  • 5. Arhangel'skii A.V. and A. Bella, A few observations on topological spaces with small diagonal, Zbornik radova Filozofskog faculteta u Nisu Ser. Mat. 6 (1992), 211-213. CMP 1994:3
  • 6. Arhangel'skii A.V. and Fedorchuk V.V., On condensations of countably compact spaces onto compacta, Fund. Prikl. Mat. 1 (1995), 871--880. (Russian)
  • 7. A. V. Arkhangel′skiĭ and V. I. Ponomarev, Fundamentals of general topology, Mathematics and its Applications, D. Reidel Publishing Co., Dordrecht, 1984. Problems and exercises; Translated from the Russian by V. K. Jain; With a foreword by P. Alexandroff [P. S. Aleksandrov]. MR 785749
  • 8. A. V. Arhangel′skii and V. V. Tkačuk, Calibers and point-finite cellularity of the space 𝐶𝑝(𝑋) and some questions of S. Gul′ko and M. Husek, Topology Appl. 23 (1986), no. 1, 65–73. MR 849094, https://doi.org/10.1016/0166-8641(86)90017-9
  • 9. Asanov M., Cardinal invariants of spaces of continuous functions, Modern Topology and Set Theory, Izhevskij Universitet, Izhevsk, 1979, pp. (8-12). (Russian)
  • 10. Ryszard Engelking, Topologia ogólna, Państwowe Wydawnictwo Naukowe, Warsaw, 1975 (Polish). Biblioteka Matematyczna. Tom 47. [Mathematics Library. Vol. 47]. MR 0500779
    Ryszard Engelking, General topology, PWN—Polish Scientific Publishers, Warsaw, 1977. Translated from the Polish by the author; Monografie Matematyczne, Tom 60. [Mathematical Monographs, Vol. 60]. MR 0500780
  • 11. A. Hajnal and I. Juhász, On hereditarily 𝛼-Lindelöf and 𝛼-separable spaces. II, Fund. Math. 81 (1973/74), no. 2, 147–158. Collection of articles dedicated to Andrzej Mostowski on the occasion of his sixtieth birthday, II. MR 0336705
  • 12. A. Hajnal and I. Juhász, A separable normal topological group need not be Lindelöf, General Topology and Appl. 6 (1976), no. 2, 199–205. MR 0431086
  • 13. M. Hušek, Topological spaces without 𝜅-accessible diagonal, Comment. Math. Univ. Carolinae 18 (1977), no. 4, 777–788. MR 0515009
  • 14. Kenneth Kunen, Strong 𝑆 and 𝐿 spaces under 𝑀𝐴, Set-theoretic topology (Papers, Inst. Medicine and Math., Ohio Univ., Athens, Ohio, 1975-1976) Academic Press, New York, 1977, pp. 265–268. MR 0440487
  • 15. S. Negrepontis, Banach spaces and topology, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 1045–1142. MR 776642
  • 16. Judy Roitman, The spread of regular spaces, General Topology and Appl. 8 (1978), no. 1, 85–91. MR 0493957
  • 17. Judy Roitman, Basic 𝑆 and 𝐿, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 295–326. MR 776626
  • 18. B. Šapirovskiĭ, Discrete subspaces of topological spaces. Weight, tightness and Suslin number, Dokl. Akad. Nauk SSSR 202 (1972), 779–782 (Russian). MR 0292012
  • 19. Stevo Todorčević, Forcing positive partition relations, Trans. Amer. Math. Soc. 280 (1983), no. 2, 703–720. MR 716846, https://doi.org/10.1090/S0002-9947-1983-0716846-0
  • 20. Stevo Todorčević, Some applications of 𝑆 and 𝐿 combinatorics, The work of Mary Ellen Rudin (Madison, WI, 1991) Ann. New York Acad. Sci., vol. 705, New York Acad. Sci., New York, 1993, pp. 130–167. MR 1277886, https://doi.org/10.1111/j.1749-6632.1993.tb12530.x
  • 21. N. V. Velichko, Weak topology of spaces of continuous functions, Mat. Zametki 30 (1981), no. 5, 703–712, 797 (Russian). MR 640070
  • 22. Phillip Zenor, Hereditary 𝔪-separability and the hereditary 𝔪-Lindelöf property in product spaces and function spaces, Fund. Math. 106 (1980), no. 3, 175–180. MR 584491

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 54A25, 54C35, 54A35

Retrieve articles in all journals with MSC (1991): 54A25, 54C35, 54A35


Additional Information

A. V. Arhangelskii
Affiliation: Chair of General Topology and Geometry, Mech.-Math. Faculty, Moscow University, Moscow 119899, Russia (June 15–December 31); Department of Mathematics, 321 Morton Hall, Ohio University, Athens, Ohio 45701 (January 1–June 15)
Email: aarhange@oucsace.cs.ohiou.edu

DOI: https://doi.org/10.1090/S0002-9939-96-03605-2
Keywords: Spread, hereditary density, condensation, Lindel\"{o}f space, function spaces, topology of pointwise convergence, small diagonal, caliber
Received by editor(s): April 7, 1995
Additional Notes: The author was partially supported by NSF grant DMS-9312363.
Communicated by: Franklin D. Tall
Article copyright: © Copyright 1996 American Mathematical Society