Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A closed model category
for ($n-1$)-connected spaces


Authors: J. Ignacio Extremiana Aldana, L. Javier Hernández Paricio and M. Teresa Rivas Rodríguez
Journal: Proc. Amer. Math. Soc. 124 (1996), 3545-3553
MSC (1991): Primary 55P15, 55U35
DOI: https://doi.org/10.1090/S0002-9939-96-03606-4
MathSciNet review: 1353370
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For each integer $n > 0$, we give a distinct closed model category structure to the category of pointed spaces $ \mathop {\mathrm {Top}}\nolimits _{\star }$ such that the corresponding localized category $ \mathop {\mathrm {Ho}}\nolimits ( \mathop {\mathrm {Top}}\nolimits _{\star }^{n})$ is equivalent to the standard homotopy category of $(n-1)$-connected CW-complexes. The structure of closed model category given by Quillen to $ \mathop {\mathrm {Top}}\nolimits _{\star }$ is based on maps which induce isomorphisms on all homotopy group functors $\pi _{q}$ and for any choice of base point. For each $n>0$, the closed model category structure given here takes as weak equivalences those maps that for the given base point induce isomorphisms on $\pi _{q}$ for $q\ge n$ .


References [Enhancements On Off] (What's this?)

  • [1] J.G. Cabello, A.R. Garzón, Closed model structures for algebraic models of $n$-types, J. Pure Appl. Algebra 103 (1995), 287--302.
  • [2] C. Elvira, L.J. Hernández, Closed model categories for the $n$-type of spaces and simplicial sets, Math. Proc. Camb. Phil. Soc 118 (1995), 93-103. CMP 95:12
  • [3] P. Gabriel, M. Zisman, Calculus of fractions and homotopy theory, Springer-Verlag, Berlin, New York, 1967. MR 35:1019
  • [4] A.R. Garzón, J.G. Miranda, Homotopy types of simplicial groups and related closed model structures, Preprint (1994).
  • [5] L.J. Hernández, T. Porter, Categorical models of $n$-types for pro-crossed complexes and ${\mathcal {J}}_{n}$-prospaces, Lecture Notes in Math 1509 (1992), 146-186. MR 93m:55015
  • [6] T. Porter, $n$-types of simplicial groups and crossed $n$-cubes, Topology. 32 (1993), 5-24. MR 94e:55017
  • [7] D. Quillen, Homotopical Algebra, Lecture Notes in Math 43 (1967). MR 36:6480
  • [8] D. Quillen, Rational Homotopy Theory, Ann. of Maths 90 (1969), 205-295. MR 41:2678

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 55P15, 55U35

Retrieve articles in all journals with MSC (1991): 55P15, 55U35


Additional Information

J. Ignacio Extremiana Aldana
Affiliation: Departamento de Matemáticas y Computación, Universidad de La Rioja, 26004 Logroño, Spain
Email: jextremi@siur.unirioja.es

L. Javier Hernández Paricio
Affiliation: Departamento de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, Spain
Email: ljhernan@posta.unizar.es

M. Teresa Rivas Rodríguez
Affiliation: Departamento de Matemáticas y Computación, Universidad de La Rioja, 26004 Logroño, Spain

DOI: https://doi.org/10.1090/S0002-9939-96-03606-4
Keywords: Closed model category, homotopy category, $(n-1)$-connected space
Received by editor(s): May 5, 1995
Additional Notes: The authors acknowledge the financial aid given by the U.R., I.E.R. and DGICYT, project PB93-0581-C02-01.
Communicated by: Thomas Goodwillie
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society