A closed model category for ()connected spaces
Authors:
J. Ignacio Extremiana Aldana, L. Javier Hernández Paricio and M. Teresa Rivas Rodríguez
Journal:
Proc. Amer. Math. Soc. 124 (1996), 35453553
MSC (1991):
Primary 55P15, 55U35
MathSciNet review:
1353370
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: For each integer , we give a distinct closed model category structure to the category of pointed spaces such that the corresponding localized category is equivalent to the standard homotopy category of connected CWcomplexes. The structure of closed model category given by Quillen to is based on maps which induce isomorphisms on all homotopy group functors and for any choice of base point. For each , the closed model category structure given here takes as weak equivalences those maps that for the given base point induce isomorphisms on for .
 [1]
J.G. Cabello, A.R. Garzón, Closed model structures for algebraic models of types, J. Pure Appl. Algebra 103 (1995), 287302.
 [2]
C. Elvira, L.J. Hernández, Closed model categories for the type of spaces and simplicial sets, Math. Proc. Camb. Phil. Soc 118 (1995), 93103. CMP 95:12
 [3]
P.
Gabriel and M.
Zisman, Calculus of fractions and homotopy theory, Ergebnisse
der Mathematik und ihrer Grenzgebiete, Band 35, SpringerVerlag New York,
Inc., New York, 1967. MR 0210125
(35 #1019)
 [4]
A.R. Garzón, J.G. Miranda, Homotopy types of simplicial groups and related closed model structures, Preprint (1994).
 [5]
L.
J. Hernández and T.
Porter, Categorical models of 𝑛types for procrossed
complexes and ℐ_{𝓃}prospaces, Algebraic topology (San
Feliu de Guíxols, 1990) Lecture Notes in Math., vol. 1509,
Springer, Berlin, 1992, pp. 146–185. MR 1185969
(93m:55015), http://dx.doi.org/10.1007/BFb0087509
 [6]
Timothy
Porter, 𝑛types of simplicial groups and crossed
𝑛cubes, Topology 32 (1993), no. 1,
5–24. MR
1204402 (94e:55017), http://dx.doi.org/10.1016/00409383(93)90033R
 [7]
Daniel
G. Quillen, Homotopical algebra, Lecture Notes in Mathematics,
No. 43, SpringerVerlag, BerlinNew York, 1967. MR 0223432
(36 #6480)
 [8]
Daniel
Quillen, Rational homotopy theory, Ann. of Math. (2)
90 (1969), 205–295. MR 0258031
(41 #2678)
 [1]
 J.G. Cabello, A.R. Garzón, Closed model structures for algebraic models of types, J. Pure Appl. Algebra 103 (1995), 287302.
 [2]
 C. Elvira, L.J. Hernández, Closed model categories for the type of spaces and simplicial sets, Math. Proc. Camb. Phil. Soc 118 (1995), 93103. CMP 95:12
 [3]
 P. Gabriel, M. Zisman, Calculus of fractions and homotopy theory, SpringerVerlag, Berlin, New York, 1967. MR 35:1019
 [4]
 A.R. Garzón, J.G. Miranda, Homotopy types of simplicial groups and related closed model structures, Preprint (1994).
 [5]
 L.J. Hernández, T. Porter, Categorical models of types for procrossed complexes and prospaces, Lecture Notes in Math 1509 (1992), 146186. MR 93m:55015
 [6]
 T. Porter, types of simplicial groups and crossed cubes, Topology. 32 (1993), 524. MR 94e:55017
 [7]
 D. Quillen, Homotopical Algebra, Lecture Notes in Math 43 (1967). MR 36:6480
 [8]
 D. Quillen, Rational Homotopy Theory, Ann. of Maths 90 (1969), 205295. MR 41:2678
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
55P15,
55U35
Retrieve articles in all journals
with MSC (1991):
55P15,
55U35
Additional Information
J. Ignacio Extremiana Aldana
Affiliation:
Departamento de Matemáticas y Computación, Universidad de La Rioja, 26004 Logroño, Spain
Email:
jextremi@siur.unirioja.es
L. Javier Hernández Paricio
Affiliation:
Departamento de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, Spain
Email:
ljhernan@posta.unizar.es
M. Teresa Rivas Rodríguez
Affiliation:
Departamento de Matemáticas y Computación, Universidad de La Rioja, 26004 Logroño, Spain
DOI:
http://dx.doi.org/10.1090/S0002993996036064
PII:
S 00029939(96)036064
Keywords:
Closed model category,
homotopy category,
$(n1)$connected space
Received by editor(s):
May 5, 1995
Additional Notes:
The authors acknowledge the financial aid given by the U.R., I.E.R. and DGICYT, project PB930581C0201.
Communicated by:
Thomas Goodwillie
Article copyright:
© Copyright 1996
American Mathematical Society
