Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A non-treelike continuum that is not
the 2-to-1 image of any continuum


Author: Jo W. Heath
Journal: Proc. Amer. Math. Soc. 124 (1996), 3571-3578
MSC (1991): Primary 54C10
DOI: https://doi.org/10.1090/S0002-9939-96-03735-5
MathSciNet review: 1371126
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Some thirteen years ago S. B. Nadler, Jr. and L. E. Ward, Jr., asked if any treelike continuum could be the 2-to-1 image of a continuum. In fact, it has been conjectured that the property of being treelike characterizes those continua that are not the 2-to-1 image of any continuum. But the characterization must be something else; this paper shows that many pseudo-solenoids are not the 2-to-1 image of any continuum.


References [Enhancements On Off] (What's this?)

  • 1. R. H. Bing, Concerning hereditarily indecomposable continua. Pacific J. Math. 1 (1951) 43-51. MR 13:265b
  • 2. J. H. Case and R. E. Chamberlin, Characterizations of tree-like continua. Pacific J. Math. 10 (1960) 73-84. MR 22:1868
  • 3. H. Cook, Tree-likeness of dendroids and $\lambda $-dendroids. Fund. Math. 68 (1970) 19-22. MR 41:6171
  • 4. W. D[??]ebski, Two-to-one maps on solenoids and Knaster continua, Fund. Math. 141 (1992) 277-285. MR 94b:54094
  • 5. W. D[??]ebski, Jo Heath, J. Mioduszewski, Exactly 2-to-1 maps onto arc continua, To appear, Fund. Math.
  • 6. Jo Heath, 2-to-1 maps with hereditarily indecomposable images. Proceedings of the Amer. Math. Soc. 113 (1991)839-846. MR 92c:54012
  • 7. Jo Heath, Weakly confluent, 2-to-1 maps on hereditarily indecomposable continua. Proceedings AMS 117 (1993) 569-573. MR 93d:54047
  • 8. Jo Heath, Exactly k-to-1 maps: from pathological functions with finitely many discontinuities to well-behaved covering maps. Continua with the Houston Problem Book, Lecture Notes in Pure and Applied Mathematics, Series/170, Marcel Dekker, New York, 1995, pp. 89-102. MR 96d:54015
  • 9. Sam B. Nadler, Jr. Continuum Theory. Marcel Dekker, Inc. New York, Basel, Hong Kong. MR 93m:54002
  • 10. S. B. Nadler, Jr. and L. E. Ward, Jr., Concerning exactly (n,1) images of continua, Proceedings AMS 87 (1983), 351-354. MR 84c:54059
  • 11. J. T. Rogers, Jr. Pseudo-circles and universal circularly chainable continua. Ill. J. Math. 14 (1970) 222-237. MR 41:9213

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 54C10

Retrieve articles in all journals with MSC (1991): 54C10


Additional Information

Jo W. Heath
Affiliation: Department of Mathematics, Auburn University, Auburn, Alabama 36849-5310
Email: heathjw@mail.auburn.edu

DOI: https://doi.org/10.1090/S0002-9939-96-03735-5
Keywords: Pseudo-circle, pseudo-solenoid, 2-to-1 map, treelike continuum, indecomposable continuum, hereditarily indecomposable continuum
Received by editor(s): May 25, 1995
Communicated by: James E. West
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society