A cocycle theorem with an application

to Rosenthal sets

Author:
Peter Schwartz

Journal:
Proc. Amer. Math. Soc. **124** (1996), 3689-3698

MSC (1991):
Primary 47A99, 42A16, 42A55

MathSciNet review:
1328377

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For certain Markov operators we show that bounded cocycles with respect to are coboundaries. This result is applied to show that certain translation invariant subspaces of functions on the unit circle have unexpected regularity properties.

**[Bl1]**Ron C. Blei,*On trigonometric series associated with separable, translation invariant subspaces of 𝐿^{∞}(𝐺)*, Trans. Amer. Math. Soc.**173**(1972), 491–499. MR**0313715**, 10.1090/S0002-9947-1972-0313715-8**[Bl2]**Ron C. Blei,*A simple Diophantine condition in harmonic analysis*, Studia Math.**52**(1974/75), 195–202. MR**0470621****[Bl3]**Ron C. Blei,*Rosenthal sets that cannot be sup-norm partitioned and an application to tensor products*, Colloq. Math.**37**(1977), no. 2, 295–298. MR**0481934****[FIS]**Stephen H. Friedberg, Arnold J. Insel, and Lawrence E. Spence,*Linear algebra*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1979. MR**548724****[Fo]**S. R. Foguel,*Ergodic decomposition of a topological space*, Israel J. Math.**7**(1969), 164–167. MR**0249570****[GH]**Walter Helbig Gottschalk and Gustav Arnold Hedlund,*Topological dynamics*, American Mathematical Society Colloquium Publications, Vol. 36, American Mathematical Society, Providence, R. I., 1955. MR**0074810****[Kr]**Ulrich Krengel,*Ergodic theorems*, de Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter & Co., Berlin, 1985. With a supplement by Antoine Brunel. MR**797411****[LS]**Michael Lin and Robert Sine,*Ergodic theory and the functional equation (𝐼-𝑇)𝑥=𝑦*, J. Operator Theory**10**(1983), no. 1, 153–166. MR**715565****[LR]**Jorge M. López and Kenneth A. Ross,*Sidon sets*, Marcel Dekker, Inc., New York, 1975. Lecture Notes in Pure and Applied Mathematics, Vol. 13. MR**0440298****[Me]**Paul-A. Meyer,*Probability and potentials*, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1966. MR**0205288****[PS1]**Louis Pigno and Sadahiro Saeki,*On the spectra of almost periodic functions*, Indiana Univ. Math. J.**25**(1976), no. 2, 191–194. MR**0407539****[PS2]**-,*Almost periodic functions and certain lacunary sets*, Kansas State University Technical Report 42, 1974.**[Ro]**Haskell P. Rosenthal,*On trigonometric series associated with weak* closed subspaces of continuous functions*, J. Math. Mech.**17**(1967), 485–490. MR**0216229****[St]**Karl R. Stromberg,*Introduction to classical real analysis*, Wadsworth International, Belmont, Calif., 1981. Wadsworth International Mathematics Series. MR**604364**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
47A99,
42A16,
42A55

Retrieve articles in all journals with MSC (1991): 47A99, 42A16, 42A55

Additional Information

**Peter Schwartz**

Affiliation:
Department of Mathematics, The Ohio State University, Columbus, Ohio 43210

Email:
schwartz@math.ohio-state.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-96-03422-3

Received by editor(s):
February 17, 1994

Received by editor(s) in revised form:
March 25, 1995

Communicated by:
J. Marshall Ash

Article copyright:
© Copyright 1996
American Mathematical Society