NOTE ON THE BRADLEY AND RANNUJAN SUMMATION

CHU WENCHANG

(Communicated by J. Marshall Ash)

Abstract. The hypergeometric series of Bradley and Ramanujan is evaluated by means of the binomial convolutions of Hagen and Rothe, which presents, alternatively, a short proof of the recent result of Bradley about Ramanujan’s enigmatic claim.

For complex numbers α, β, γ and integer δ, define the sum of Ramanujan type by

$$ S_\delta(\alpha,\beta,\gamma; z) = \gamma \sum_{k=0}^{\infty} \frac{(\alpha)_k}{k!} \frac{\Gamma(\beta + zk)}{\Gamma(\beta +zk)(k + \gamma + zk)} \frac{\Gamma(k + \gamma + zk)}{\Gamma(1 + \gamma + zk)}. $$

(1)

It reduces, under parameter replacements $\delta \to 0$, $\beta \to 1 + \beta$ and $\gamma \to m$, to the sum of Bradley [2], who has recently presented a most plausible interpretation for Ramanujan’s enigmatic claim, which may be restated in terms of S-sum as “the difference between $\Gamma(1 + \beta - m)/\Gamma(1 + \alpha + \beta - m)$ and $S_0(\alpha, 1 + \beta, m; z)$ …” (cf. Bradley [2]).

Theorem. With the S-function defined as above, we have the following evaluations:

A: Bradley [2, 1994]. For $\Re(\delta + \beta - \gamma) > 0$,

$$ S_\delta(\alpha,\beta,\gamma; 0) = \frac{\Gamma(\beta) \Gamma(\delta + \beta - \gamma)}{\Gamma(\delta + \beta) \Gamma(\delta + \alpha + \beta - \gamma)}. $$

(2a)

B. For $\Re(1 - \alpha - \beta + \gamma) > 0$,

$$ S_\delta(\alpha,\beta,\gamma; -1) = \frac{\Gamma(\beta) \Gamma(1 - \beta) \Gamma(1 - \alpha - \beta + \gamma)}{\Gamma(\delta + \alpha + \beta) \Gamma(1 - \alpha - \beta) \Gamma(1 - \beta + \gamma)}. $$

(2b)

C: Bradley [2, 1994]. When α is a non-positive integer,

$$ S_0(\alpha,\beta,\gamma; z) = \frac{\Gamma(\beta - \gamma)}{\Gamma(\alpha + \beta - \gamma)}. $$

(2c)

D. When α is a non-positive integer,

$$ S_1(\alpha,\beta,\gamma; z) = \frac{\alpha z - \beta + \gamma}{\alpha z - \beta} \frac{\Gamma(\beta - \gamma)}{\Gamma(1 + \alpha + \beta - \gamma)}. $$

(2d)
Proof. For $z = 0$ and -1, we can rewrite

$$S_\delta(\alpha, \beta, \gamma; 0) = \frac{\Gamma(\beta)}{\Gamma(\delta + \alpha + \beta)} \times 2F_1 \left[\begin{array}{c} \alpha, \gamma \\ \delta + \alpha + \beta \end{array} \right],$$

$$S_\delta(\alpha, \beta, \gamma; -1) = \frac{\Gamma(\beta)}{\Gamma(\delta + \alpha + \beta)} \times 2F_1 \left[\begin{array}{c} \alpha, -\gamma \\ 1 - \beta \end{array} \right],$$

which yield (2a) and (2b), respectively, in view of the Gauss theorem [1] (see also [3])

$$(3) \quad 2F_1 \left[\begin{array}{c} a, b \\ c \end{array} \right] = \frac{\Gamma(c-a)\Gamma(c-b)}{\Gamma(c)\Gamma(c-a-b)}, \quad \text{Re}(c - a - b) > 0.$$

When $\alpha = -n$, a non-positive integer, the S-function defined in (1) may be reformulated as

$$S_\delta(-n, \beta, \gamma; z) = \gamma \sum_{k=0}^{n} (-1)^{\delta+n} \binom{n}{k} \frac{(\gamma + zk)_k}{\gamma + zk} (1 - \beta - zk)_{n-k-\delta}$$

$$= \sum_{k=0}^{n} \frac{\gamma}{\gamma + zk} \binom{-\gamma - zk}{k} \frac{n!}{(\beta + zk)_{\delta}} \frac{(\delta - 1 + \beta + zk)}{n - k},$$

which reduce, respectively for $\delta = 0$ and 1, to

$$(4a) \quad S_0(-n, \beta, \gamma; z) = n! \left(\frac{\beta - \gamma - 1}{n} \right),$$

$$(4b) \quad S_1(-n, \beta, \gamma; z) = \frac{n!}{\beta + zn} \left(\frac{\beta - \gamma}{n} \right),$$

by means of the Hagen-Rothe [5] (see also [3, 4]) formulae

$$(5a) \quad \sum_{k=0}^{n} \frac{a}{a + bk} \binom{a + bk}{k} \binom{c - bk}{n - k} = \binom{a + c}{n},$$

$$(5b) \quad \sum_{k=0}^{n} \frac{a}{a + bk} \binom{a + bk}{k} \binom{c - bn}{c - bk} \binom{c - bk}{n - k} = \frac{a + c - bn}{a + c} \binom{a + c}{n}.$$

It is obvious that (2c) and (2d) are respectively the reformulations of (4a) and (4b).

REFERENCES

Istituto di Matematica, “Guido Castelnuovo”, Università degli Studi di Roma “La Sapienza”, Roma, Italia

E-mail address: WENCHANG@mat.uniromal.it