THE CENTRAL INTERTWINING LIFTING
AND STRICT CONTRACTIONS

RADU GADIDOV

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. In this paper we give a necessary and sufficient condition for the central intertwining lifting of a strict contraction to be strictly contractive. As an application, we obtain a factorization of $D_{A_c}^{-2}$ when the central intertwining lifting A_c of A is a strict contraction.

Let H, H' be (complex, separable) Hilbert spaces, T and T' contractions in $L(H)$ and $L(H')$, respectively, having minimal isometric dilations U and U' in $L(K)$ and $L(K')$. If A is a contraction operator in $L(H, H')$ such that $AT = T'A$, the celebrated Sz.-Nagy–Foias commutant lifting theorem ([3, 7, 8]) ensures the existence of an intertwining lifting of A, i.e. the existence of a contraction B in $L(K, K')$ such that $BU = U'B$ and $B^*|_{H'} = A^*$. Recently, a particular intertwining lifting of A, called the central intertwining lifting of A (see [4, 5, 6]) has played an important role in solving certain H^2-H^∞ optimization problems appearing in control theory. Moreover, an example of a strictly contractive Hankel operator whose central intertwining lifting has norm one was given in [2]. The purpose of this note is to prove a necessary and sufficient condition (Theorem 1 below) for the central intertwining lifting A_c of a strict contraction to be strictly contractive.

Necessary and sufficient conditions for the central intertwining lifting to be strictly contractive were also obtained in [5] when T is a unilateral shift. In this case, the central intertwining lifting is strictly contractive if and only if the outer function $(I - A^*A)^{-1}_{|_{kerT^*}}$ is invertible (see [5]).

For the convenience of the reader we begin by reviewing some notation and terminology (see [3, 4, 5, 6, 8]). Throughout this note all Hilbert spaces are understood to be complex and separable. If D, D' are Hilbert spaces and $C \in L(D, D')$ is a contraction (i.e. $\|C\| \leq 1$), we denote as usual the defect operator of C by $D_C := (I - C^*C)^{1/2}$, the defect space of C by $D_C := D_C^*$, and C is said to be a strict contraction if $\|C\| < 1$. Let D denote the open unit disc in C, and $T=\partial D$. The spaces $L^2(D)$ and $H^2(D)$ are the usual Lebesgue and Hardy spaces of D-valued functions on the unit circle T relative to normalized Lebesgue measure m on T, and $S \in L(H^2(D))$ is the multiplication by the variable on $H^2(D)$. Since the minimal isometric dilation of T' is unique (up to an isomorphism (see [3, 8])), we may and do assume that $U' \in L(K')$, the minimal isometric dilation of T' is the Sz.-Nagy–Schäffer minimal isometric dilation of T', i.e. $K' = H' \oplus H^2(D_T)$ and U'...
on $\mathcal{H}' \oplus \mathbb{H}^2(D_{T'})$ is given by

$$U' = \begin{bmatrix} T' & 0 \\ D_{T'} & S' \end{bmatrix}: \mathcal{H}' \oplus \mathbb{H}^2(D_{T'}) \to \mathcal{H}' \oplus \mathbb{H}^2(D_{T'})$$

where $S' \in \mathcal{L}(\mathbb{H}^2(D_{T'}))$ is the multiplication by z on $\mathbb{H}^2(D_{T'})$, (see [3, 8]). If A is a strict contraction, then the central intertwining lifting A_c of A is the contraction in $\mathcal{L}(\mathcal{K}, \mathcal{H}' \oplus \mathbb{H}^2(D_{T'}))$ given by

$$(1) \quad A_c = \begin{bmatrix} \widetilde{A} & - \widetilde{A}^*T_A^*(I - zT_A^*)^{-1} \\ D_{T'} & - \widetilde{A}^*T_A^* \end{bmatrix}: \mathcal{K} \to \mathcal{H}' \oplus \mathbb{H}^2(D_{T'})$$

where $\widetilde{A} := AP$, $T_A := (I - \widetilde{A}^*\widetilde{A})U(I - U^*\widetilde{A}^*\widetilde{A})^{-1}$, and P is the orthogonal projection from \mathcal{K} onto \mathcal{H} (see [4, 5]). Moreover, let $N_* \in \mathcal{L}(D_{T'})$, $L \in \mathcal{L}(\mathcal{H})$ be the operators defined by

$$N_* = I_{D_{T'}} + D_{T'}AD_A^{-2}A^*D_{T'}, \quad L = D_A^{-2} - (I - T^*A^*AT)^{-1}.$$

Moreover, for any $k \in \mathbb{K}$ the function

$$(3) \quad z \to k_A(z) := D_{T'}AD_A^{-2}P(I - zU^*)^{-1}k$$

on D will be denoted by k_A. Now we may state the main result of this note.

Theorem 1. Let T and T' be contractions in $\mathcal{L}(\mathcal{H})$ and $\mathcal{L}(\mathcal{H}')$, respectively, having minimal isometric dilations $U \in \mathcal{L}(\mathcal{K})$ and $U' \in \mathcal{L}(\mathcal{H}' \oplus \mathbb{H}^2(D_{T'}))$. If A is a strict contraction in $\mathcal{L}(\mathcal{H}, \mathcal{H}')$ such that $AT = T'A$, then the central intertwining lifting A_c of A is a strict contraction if and only if for any $k \in \mathbb{K}$ the function k_A is in $\mathcal{H}^2(D_{T'})$. Moreover, if T is the multiplication by the variable on $\mathbb{H}^2(D)$, then the central intertwining lifting A_c of A is a strict contraction if and only if the function $\Theta_A: D \to \mathcal{L}(D_{T'}, D)$ given by

$$\Theta_A(z)d_{T'} = (D_A^{-2}A^*D_{T'}d_{T'})(z), \quad z \in D, \ d_{T'} \in D_{T'}$$

is bounded.

Proof. Without loss of generality we may assume (see [3, 8]) that T is an isometry. In this case $U = T$, $P = I_{\mathcal{K}}$, and for any nonnegative integer n let $i_n : D_{T'} \to \mathcal{H}' \oplus \mathbb{H}^2(D_{T'})$ be defined by $i_n d_{T'} = 0 \oplus e^{int}d_{T'}$, $d_{T'} \in D_{T'}$, and let $\mathcal{H}_n' = \mathcal{H}' \oplus \oplus_{k=0}^{n} e^{ikt}D_{T'}$ ($\subset \mathcal{H}' \oplus \mathbb{H}^2(D_{T'})$). Furthermore, let P_n' denote the orthogonal projection from $\mathcal{H}' \oplus \mathbb{H}^2(D_{T'})$ onto \mathcal{H}_n', $A_n := P_n'A_c$ and $T_n' := P_n'U_{|\mathcal{H}_n'}$. Then (see [3, 8]), for any nonnegative integer n

$$(4) \quad P_n' = U'P_n'_{n-1}U' + i_{n-1}^*i_{n-1}, \quad A_nT = T_n'A_n,$$

and according to (1) and Lemma V.1.1 of [3] (A_{n+1} is a one-step intertwining lifting of A_n), for any nonnegative integer n

$$(5) \quad i_{n}^*A_n = i_{n-1}^*A_{n-1}T_{A_{n-1}}^*.$$
We will show that for any nonnegative integer \(n \)

\[
D_{A_n}^{-2} = D_{A_n}^{-2} + \sum_{k=1}^{n+1} T^k L T^k.
\]

Once we show this the proof can be completed as follows. It is easy to see that

\[
L = D_{A_n}^{-2} A^* D_{T}^{-1} N_{e}^{-1} D_{T}^{-1} AD_{A_n}^{-2},
\]

so by (6) and (7), \(\|A_c\| < 1 \) if and only if there exists a positive constant \(M \) such that for any \(h \) in \(\mathcal{H} \) (\(= \mathcal{K} \))

\[
\sum_{n=0}^{\infty} \|L^{1/2} T^n h\|^2 = \sum_{n=0}^{\infty} \|N_{e}^{-1/2} D_{T}^{-2} AD_{A_n}^{-2} T^n h\|^2 \leq M \|h\|^2.
\]

Taking into account (3), it follows that for any vector \(h \) in \(\mathcal{H} \)

\[
\|h_A\|^2_{H^2(D_{T}')} = \sum_{n=0}^{\infty} \|D_{T}^{-} AD_{A_n}^{-2} T^n h\|^2,
\]

so by (8) and (9) it follows that \(\|A_c\| < 1 \) if and only if for any vector \(h \) in \(\mathcal{H} \), \(h_A \) is in \(H^2(D_{T}') \) and the proof of the first part of the theorem is complete. Assume now that \(T \) is the multiplication by the variable on \(H^2(D) \) and \(\|A_c\| < 1 \). Then the operator \(M_A : H^2(D) \to H^2(D_{T}') \) defined by \(M_A := h_A, h \in H^2(D) \) is bounded. It is easy to check that \(M'_A \) is an analytic Toeplitz operator whose symbol is \(\Theta_A \) (i.e. \(M'_A h' = \Theta_A h' \), \(h' \in H^2(D_{T}') \)), so \(\Theta_A \) is bounded. Conversely, if \(\Theta_A \) is bounded, then \(M_A \) is bounded, hence for any function \(h \) in \(H^2(D) \), \(h_A \in H^2(D_{T}') \) and \(\|A_c\| < 1 \).

Now we show that (6) holds for any nonnegative integer \(n \). From (4) and (5) we obtain that for any nonnegative integer \(n \)

\[
D_{A_n}^2 = D_{A_{n-1}}^2 - T_{A_{n-1}} A_{n-1}^* D_{T}^{-1} A_{n-1} T_{A_{n-1}},
\]

\[
D_{A_{n-1}}^2 = I - T^* A_{n}^* A_{n} T,
\]

and we will show that

\[
D_{A_n}^{-2} = D_{A_{n-1}}^{-2} + T [D_{A_{n-1}}^{-2} - D_{A_{n-2}}^{-2}] T^*,
\]

from which (6) follows at once. In order to prove (11) we need to check that

\[
D_{A_{n-1}}^2 T [D_{A_{n-1}}^{-2} - D_{A_{n-2}}^{-2}] T^* - T_{A_{n-1}} A_{n-1}^* D_{T}^{-1} A_{n-1} T_{A_{n-1}} D_{A_{n-1}}^{-2}
\]

\[
- T_{A_{n-1}} A_{n-1}^* D_{T}^{-1} A_{n-1} [D_{A_{n-2}}^{-2} - D_{A_{n-2}}^{-2}] T^* = 0,
\]

or equivalently, using (1), (4) and (10),

\[
D_{A_{n-1}}^2 - D_{A_{n-2}}^2 - D_{A_{n-2}}^2 A_{n-1}^* D_{T}^{-1} A_{n-1} D_{A_{n-1}}^{-2}
\]

\[
- D_{A_{n-1}}^2 A_{n-1}^* D_{T}^{-1} A_{n-1} [D_{A_{n-2}}^{-2} - D_{A_{n-2}}^{-2}] = D_{A_{n-1}}^2 - D_{A_{n-2}}^2 - D_{A_{n-2}}^2 A_{n-1}^* D_{T}^{-1} A_{n-1} D_{A_{n-1}}^{-2}
\]

\[
= D_{A_{n-1}}^2 [D_{A_{n-1}}^2 - D_{A_{n-2}}^2 - A_{n-1}^* D_{T}^{-1} A_{n-1}] D_{A_{n-1}}^2 = 0,
\]
which follows easily since by (4) and (10)
\[D_{A_{n-1}}^2 - D_{A_{n-2}}^2 - A_{n-1}^*D_{A_{n-1}}^2 + A_{n-1} \]
\[= (I - T^*A_{n-1}^*A_{n-1}T) - D_{A_{n-2}}^2 - A_{n-1}^*D_{A_{n-1}}^2 + A_{n-1} \]
\[= (I - A_{n-1}^*T_{n-1}^*T_{n-1}A_{n-1}) - D_{A_{n-2}}^2 - A_{n-1}^*D_{A_{n-1}}^2 + A_{n-1} = 0. \]

So we have proved (6) and the proof of the theorem is complete. \(\square\)

A direct application of (6) yields the following.

Corollary 2. Let \(T \) and \(T' \) be contractions in \(\mathcal{L}(\mathcal{H}) \) and \(\mathcal{L}(\mathcal{H}') \), respectively, having minimal isometric dilations \(U \) in \(\mathcal{L}(\mathcal{K}) \) and \(U' \) in \(\mathcal{L}(\mathcal{H} \oplus \mathcal{H}^2(\mathcal{D}_{T'})) \). Let \(A \) in \(\mathcal{L}(\mathcal{H}, \mathcal{H}') \) be a strict contraction such that \(AT = T'A \), and set \(\tilde{A} = AP \) (\(P \) is the orthogonal projection from \(\mathcal{K} \) onto \(\mathcal{H} \)). If the central intertwining lifting \(A_c \) of \(A \) is a strict contraction, then
\[D_{A_c}^{-2} = \Psi^*\Psi, \]
where \(\Psi : \mathcal{K} \to \mathcal{K} \oplus \mathcal{H}^2(\mathcal{D}_{T'}) \) is given by
\[\Psi := \begin{bmatrix} \tilde{D}_{A}^{-2} \\ N_s^{-1/2}D_{T'}\tilde{A}D_{A}^{-2}(I - zU^*)^{-1}U \end{bmatrix}. \]

Corollary 3. Let \(h \in \mathcal{H}^\infty \) be an outer function such that \(\text{dist}(\overline{h}/h, \mathcal{H}^\infty) < 1 \) and \(h^{-1} \notin \mathcal{H}^\infty \). If \(H \in \mathcal{L}(\mathcal{H}^2, \mathcal{H}^2) \) is the Hankel operator defined by
\[Hf = P_-h/\overline{h}f, \quad f \in \mathcal{H}^2, \]
then \(\|H\| < 1 \) and \(\|H_c\| = 1 \).

Proof. Without loss of generality we may assume that \(h(0) = 1 \). According to Chapter VIII of \([9]\), \(\|H\| < 1 \) and \(h^{-1} \in \mathcal{H}^2 \), so the Toeplitz operator \(T_{h/\overline{h}} \) is invertible. Upon setting \(g := P_+|h|^2 \) we will show that
\[\Theta_H = D_H^{-2}H^*e^{-it} = -h^{-1}S^*g \notin \mathcal{H}^\infty \]
which by Theorem 1 will finish the proof. To show (12) let us note that since
\[D_H^2 = T_{h/\overline{h}}^*T_{h/\overline{h}} \text{ and } T_{h/\overline{h}}^*(-S^*h) = H^*e^{-it}, \]
it follows that
\[T_{h/\overline{h}}\Theta_H = -S^*h. \]
Thus there exists a function \(u \in \mathcal{H}^2 \) such that
\[(h/\overline{h})\Theta_H = -S^*h + e^{-it}\overline{\pi}, \]
hence
\[h\Theta_H = -\overline{h}e^{-it}(h - 1) + e^{-it}\overline{h}\pi = -e^{-it}|h|^2 + e^{-it}\overline{h}(1 + \pi). \]
Therefore,
\[h\Theta_H = -P_+e^{-it}|h|^2 = -S^*P_+|h|^2 = -S^*g. \]
Since \(|h|^2 \geq 0 \) a.e. on \(\mathcal{T} \), it follows that
\[|h|^2 = SS^*g + g(0) + \overline{SS^*g}. \]
So
\[\overline{h} = h^{-1}SS^*g + g(0)h^{-1} + h^{-1}\overline{SS^*g}, \]

from which it follows that
\[h^{-1} = g(0)^{-1}(\sqrt{h} - h^{-1}SS^*g - h^{-1}SS^*g). \]
Since \(h^{-1} \notin H^\infty \), \(h^{-1}SS^*g \) cannot be bounded. So \(\Theta \notin H^\infty \), and the proof of the corollary is complete.

Remark. The example in [2] was obtained by considering the function \(h(z) = (1 - z)^\beta \), where \(0 < \beta < 1/2 \). Then \(h \in H^\infty \), \(\text{dist}(h,h,H^\infty) < 1 \) (see [1]), and \(h^{-1} \notin H^\infty \). So by Corollary 3 the central intertwining lifting of \(H^\infty \) has norm one and one regains the main result in [2].

ACKNOWLEDGEMENT

This paper was written while the author was visiting the Department of Mathematics at Case Western Reserve University.

REFERENCES

5. C. Foias, A. E. Frazho, and W. S. Li, The exact \(H^\infty \) estimate for the central \(H^\infty \) interpolants, Operator Theory: Adv. and Appl., vol. 64, (1993), pp. 119-156. MR 95e:47019

INSTITUTE OF MATHEMATICS OF ROMANIAN ACADEMY, BOX 1-764, RO-70700 BUCHAREST, ROMANIA
Current address: Department of Industrial Engineering, Texas A&M University, College Station, Texas 77843
E-mail address: gadidov@integer.tamu.edu