Oscillation of first order

delay differential equations

Author:
Bingtuan Li

Journal:
Proc. Amer. Math. Soc. **124** (1996), 3729-3737

MSC (1991):
Primary 34K15; Secondary 34C10

DOI:
https://doi.org/10.1090/S0002-9939-96-03674-X

MathSciNet review:
1363175

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a new technique to analyze the generalized characteristic equations to obtain some infinite integral conditions for oscillation of the nonautonomous delay differential equations.

**[1]**M. I. Tramov,*Conditions for oscillatory solutions of first order differential equations with a delayed argument*, Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Matematika 1975, no. 3, 92-96; English transl., Soviet Mathematics (Iz. VUZ)**19**(1975). MR**52:961****[2]**G. Ladas,*Sharp conditions for oscillations caused by delays*, Applicable Analysis**9**(1979), 93-98. MR**80h:34094****[3]**R. G. Koplatadze and T. A. Chanturia,*On the oscillatory and monotone solutions of the first order differential equations with deviating arguments*, Differencial'nye Uravnenija**18**(1982), 1463-1465. (Russian) MR**83k:34069****[4]**G. Ladas and I. P. Stavroulakis,*Oscillations caused by several retarded and advanced arguments*, J. Differential Equations**44**(1982), 134-152. MR**83e:34104****[5]**O. Arino, I. Györi and A. Jawhari,*Oscillation criteria in delay equations*, J. Differential Equations**53**(1984), 115-123. MR**85k:34168****[6]**B. R. Hunt and J. A. Yorke,*When all solutions of oscillate*, J. Differential Equations**53**(1984), 139-145. MR**85k:34169****[7]**M. K. Grammatikopoulos, E. A. Grove and G. Ladas,*Oscillations of first-order neutral delay differential equations*, J. Math. Anal. Appl.**120**(1986), 510-520. MR**87m:34089****[8]**I. Györi,*Oscillation conditions in scalar linear delay differential equations*, Bull. Austral. Math. Soc.**34**(1986), 1-9. MR**87j:34137****[9]**G. S. Ladde, V. Lakshmikantham and B. G. Zhang,*Oscillation theory of differential equations with deviating arguments*, Marcel Dekker, New York, 1987. MR**90h:34118****[10]**B. G. Zhang and K. Gopalsamy,*Oscillation and nonoscillation in a nonautonomous delay-logistic equation*, Quart. Appl. Math.**46**(1988), 267-273. MR**89k:34128****[11]**G. Ladas and C. Qian,*Oscillation in differential equations with positive and negative coefficients*, Canad. Math. Bull.**33**(1990), 442-451. MR**92b:34083****[12]**Y. Cheng,*Oscillation in nonautonomous scalar differential equations with deviating arguments*, Proc. Amer. Math. Soc.**110**(1990), 711-719. MR**91b:34110****[13]**I. Györi and G. Ladas,*Oscillation theory of delay differential equations with applications*, Clarendon Press, Oxford, 1991. MR**93m:34109****[14]**M. K. Kwong,*Oscillation of first-order delay equations*, J. Math. Anal. Appl.**156**(1991), 274-286. MR**92b:34082****[15]**G. Ladas, C. Qian and J. Yan,*A comparison result for the oscillation of delay differential equations*, Proc. Amer. Math. Soc.**114**(1992), 939-946. MR**92g:34097****[16]**B. Li,*Oscillations of delay differential equations with variable coefficients*, J. Math. Anal. Appl.**192**(1995), 312-321. CMP**95:12****[17]**L. H. Erbe, Qingkai Kong and B. G. Zhang,*Oscillation theory for functional differential equations*, Marcel Dekker, New York, 1995. CMP**95:6**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
34K15,
34C10

Retrieve articles in all journals with MSC (1991): 34K15, 34C10

Additional Information

**Bingtuan Li**

Affiliation:
Department of Mathematics, Arizona State University, Tempe, Arizona 85287-1804

Email:
bingtuan@asu.edu

DOI:
https://doi.org/10.1090/S0002-9939-96-03674-X

Keywords:
Oscillation,
nonoscillation,
delay differential equations

Received by editor(s):
May 12, 1995

Communicated by:
Hal L. Smith

Article copyright:
© Copyright 1996
American Mathematical Society