Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Oscillation of first order
delay differential equations


Author: Bingtuan Li
Journal: Proc. Amer. Math. Soc. 124 (1996), 3729-3737
MSC (1991): Primary 34K15; Secondary 34C10
DOI: https://doi.org/10.1090/S0002-9939-96-03674-X
MathSciNet review: 1363175
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a new technique to analyze the generalized characteristic equations to obtain some infinite integral conditions for oscillation of the nonautonomous delay differential equations.


References [Enhancements On Off] (What's this?)

  • [1] M. I. Tramov, Conditions for oscillatory solutions of first order differential equations with a delayed argument, Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Matematika 1975, no. 3, 92-96; English transl., Soviet Mathematics (Iz. VUZ) 19 (1975). MR 52:961
  • [2] G. Ladas, Sharp conditions for oscillations caused by delays, Applicable Analysis 9 (1979), 93-98. MR 80h:34094
  • [3] R. G. Koplatadze and T. A. Chanturia, On the oscillatory and monotone solutions of the first order differential equations with deviating arguments, Differencial'nye Uravnenija 18 (1982), 1463-1465. (Russian) MR 83k:34069
  • [4] G. Ladas and I. P. Stavroulakis, Oscillations caused by several retarded and advanced arguments, J. Differential Equations 44 (1982), 134-152. MR 83e:34104
  • [5] O. Arino, I. Györi and A. Jawhari, Oscillation criteria in delay equations, J. Differential Equations 53 (1984), 115-123. MR 85k:34168
  • [6] B. R. Hunt and J. A. Yorke, When all solutions of $x'=\sum ^n_{j=1}q_j(t)x(t-T_j(t))$ oscillate, J. Differential Equations 53 (1984), 139-145. MR 85k:34169
  • [7] M. K. Grammatikopoulos, E. A. Grove and G. Ladas, Oscillations of first-order neutral delay differential equations, J. Math. Anal. Appl. 120 (1986), 510-520. MR 87m:34089
  • [8] I. Györi, Oscillation conditions in scalar linear delay differential equations, Bull. Austral. Math. Soc. 34 (1986), 1-9. MR 87j:34137
  • [9] G. S. Ladde, V. Lakshmikantham and B. G. Zhang, Oscillation theory of differential equations with deviating arguments, Marcel Dekker, New York, 1987. MR 90h:34118
  • [10] B. G. Zhang and K. Gopalsamy, Oscillation and nonoscillation in a nonautonomous delay-logistic equation, Quart. Appl. Math. 46 (1988), 267-273. MR 89k:34128
  • [11] G. Ladas and C. Qian, Oscillation in differential equations with positive and negative coefficients, Canad. Math. Bull. 33 (1990), 442-451. MR 92b:34083
  • [12] Y. Cheng, Oscillation in nonautonomous scalar differential equations with deviating arguments, Proc. Amer. Math. Soc. 110 (1990), 711-719. MR 91b:34110
  • [13] I. Györi and G. Ladas, Oscillation theory of delay differential equations with applications, Clarendon Press, Oxford, 1991. MR 93m:34109
  • [14] M. K. Kwong, Oscillation of first-order delay equations, J. Math. Anal. Appl. 156 (1991), 274-286. MR 92b:34082
  • [15] G. Ladas, C. Qian and J. Yan, A comparison result for the oscillation of delay differential equations, Proc. Amer. Math. Soc. 114 (1992), 939-946. MR 92g:34097
  • [16] B. Li, Oscillations of delay differential equations with variable coefficients, J. Math. Anal. Appl. 192 (1995), 312-321. CMP 95:12
  • [17] L. H. Erbe, Qingkai Kong and B. G. Zhang, Oscillation theory for functional differential equations, Marcel Dekker, New York, 1995. CMP 95:6

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 34K15, 34C10

Retrieve articles in all journals with MSC (1991): 34K15, 34C10


Additional Information

Bingtuan Li
Affiliation: Department of Mathematics, Arizona State University, Tempe, Arizona 85287-1804
Email: bingtuan@asu.edu

DOI: https://doi.org/10.1090/S0002-9939-96-03674-X
Keywords: Oscillation, nonoscillation, delay differential equations
Received by editor(s): May 12, 1995
Communicated by: Hal L. Smith
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society