Oscillation of first order

delay differential equations

Author:
Bingtuan Li

Journal:
Proc. Amer. Math. Soc. **124** (1996), 3729-3737

MSC (1991):
Primary 34K15; Secondary 34C10

MathSciNet review:
1363175

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a new technique to analyze the generalized characteristic equations to obtain some infinite integral conditions for oscillation of the nonautonomous delay differential equations.

**[1]**M. I. Tramov,*Conditions for the oscillation of the solutions of first order differential equations with retarded argument*, Izv. Vysš. Učebn. Zaved. Matematika**3(154)**(1975), 92–96 (Russian). MR**0380060****[2]**Gerasimos Ladas,*Sharp conditions for oscillations caused by delays*, Applicable Anal.**9**(1979), no. 2, 93–98. MR**539534**, 10.1080/00036817908839256**[3]**R. G. Koplatadze and T. A. Chanturiya,*Oscillating and monotone solutions of first-order differential equations with deviating argument*, Differentsial′nye Uravneniya**18**(1982), no. 8, 1463–1465, 1472 (Russian). MR**671174****[4]**G. Ladas and I. P. Stavroulakis,*Oscillations caused by several retarded and advanced arguments*, J. Differential Equations**44**(1982), no. 1, 134–152. MR**651691**, 10.1016/0022-0396(82)90029-8**[5]**O. Arino, I. Győri, and A. Jawhari,*Oscillation criteria in delay equations*, J. Differential Equations**53**(1984), no. 1, 115–123. MR**747409**, 10.1016/0022-0396(84)90028-7**[6]**Brian R. Hunt and James A. Yorke,*When all solutions of 𝑥′=-∑𝑞ᵢ(𝑡)𝑥(𝑡-𝑇ᵢ(𝑡)) oscillate*, J. Differential Equations**53**(1984), no. 2, 139–145. MR**748236**, 10.1016/0022-0396(84)90036-6**[7]**M. K. Grammatikopoulos, E. A. Grove, and G. Ladas,*Oscillations of first-order neutral delay differential equations*, J. Math. Anal. Appl.**120**(1986), no. 2, 510–520. MR**864767**, 10.1016/0022-247X(86)90172-1**[8]**István Győri,*Oscillation conditions in scalar linear delay differential equations*, Bull. Austral. Math. Soc.**34**(1986), no. 1, 1–9. MR**847968**, 10.1017/S0004972700004457**[9]**G. S. Ladde, V. Lakshmikantham, and B. G. Zhang,*Oscillation theory of differential equations with deviating arguments*, Monographs and Textbooks in Pure and Applied Mathematics, vol. 110, Marcel Dekker, Inc., New York, 1987. MR**1017244****[10]**B. G. Zhang and K. Gopalsamy,*Oscillation and nonoscillation in a nonautonomous delay-logistic equation*, Quart. Appl. Math.**46**(1988), no. 2, 267–273. MR**950601****[11]**G. Ladas and C. Qian,*Oscillation in differential equations with positive and negative coefficients*, Canad. Math. Bull.**33**(1990), no. 4, 442–451. MR**1091349**, 10.4153/CMB-1990-072-x**[12]**Yuan Ji Cheng,*Oscillation in nonautonomous scalar differential equations with deviating arguments*, Proc. Amer. Math. Soc.**110**(1990), no. 3, 711–719. MR**1023349**, 10.1090/S0002-9939-1990-1023349-4**[13]**I. Győri and G. Ladas,*Oscillation theory of delay differential equations*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991. With applications; Oxford Science Publications. MR**1168471****[14]**Man Kam Kwong,*Oscillation of first-order delay equations*, J. Math. Anal. Appl.**156**(1991), no. 1, 274–286. MR**1102611**, 10.1016/0022-247X(91)90396-H**[15]**G. Ladas, C. Qian, and J. Yan,*A comparison result for the oscillation of delay differential equations*, Proc. Amer. Math. Soc.**114**(1992), no. 4, 939–947. MR**1052575**, 10.1090/S0002-9939-1992-1052575-5**[16]**B. Li,*Oscillations of delay differential equations with variable coefficients*, J. Math. Anal. Appl.**192**(1995), 312-321. CMP**95:12****[17]**L. H. Erbe, Qingkai Kong and B. G. Zhang,*Oscillation theory for functional differential equations*, Marcel Dekker, New York, 1995. CMP**95:6**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
34K15,
34C10

Retrieve articles in all journals with MSC (1991): 34K15, 34C10

Additional Information

**Bingtuan Li**

Affiliation:
Department of Mathematics, Arizona State University, Tempe, Arizona 85287-1804

Email:
bingtuan@asu.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-96-03674-X

Keywords:
Oscillation,
nonoscillation,
delay differential equations

Received by editor(s):
May 12, 1995

Communicated by:
Hal L. Smith

Article copyright:
© Copyright 1996
American Mathematical Society