Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Fibonacci numbers, Lucas numbers
and integrals of certain Gaussian processes

Author: Ludwig Baringhaus
Journal: Proc. Amer. Math. Soc. 124 (1996), 3875-3884
MSC (1991): Primary 60E05; Secondary 11B35
MathSciNet review: 1363410
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the distributions of integrals of Gaussian processes arising as limiting distributions of test statistics proposed for treating a goodness of fit or symmetry problem. We show that the cumulants of the distributions can be expressed in terms of Fibonacci numbers and Lucas numbers.

References [Enhancements On Off] (What's this?)

  • [1] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1964. MR 29:4914
  • [2] A. Araujo and E. Giné, The Central Limit Theorem for Real and Banach Valued Random Variables, Wiley, New York, 1980. MR 83e:60003
  • [3] L. Baringhaus and N. Henze, A consistent test for multivariate normality based on the empirical characteristic function, Metrika 35 (1988), 339-348. MR 90f:62174
  • [4] S. Csörg\H{o}, Multivariate empirical characteristic functions, Z. Wahrscheinlichkeitstheorie verw. Gebiete 55 (1981), 203-229. MR 82j:60026
  • [5] D. A. Darling, The Cramér-Smirnov test in the parametric case, Ann. Statist. 26 (1955), 1-20. MR 16:729g
  • [6] N. Dunford and J. T. Schwartz, Linear Operators, Part II, Wiley, New York, 1963. MR 32:6181
  • [7] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions. Vol. 2, McGraw-Hill, New York, 1953. MR 15:419i
  • [8] -, Tables of Integral Transforms. Vols. 1, 2, McGraw-Hill, New York, 1954. MR 15:868a; MR 16:468c
  • [9] A. Feuerverger and R. A. Mureika, The empirical characteristic function and its applications, Ann. Statist. 5 (1977), 88-97. MR 55:1605
  • [10] H.-D. Keller, Einige Untersuchungen zur empirischen charakteristischen Funtion und deren Anwendungen, Dissertation, Dortmund, 1979.
  • [11] S. Vajda, Fibonacci & Lucas Numbers, and the Golden Section, Ellis Horwood, Chichester, 1989. MR 90h:11014
  • [12] W. Whitt, Weak convergence of probability measures on the spaces $C[0,\infty )$, Ann. Math. Statist. 41 (1970), 939-944. MR 41:6259

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 60E05, 11B35

Retrieve articles in all journals with MSC (1991): 60E05, 11B35

Additional Information

Ludwig Baringhaus
Affiliation: Institut für Mathematische Stochastik, Universität Hannover, D-30167 Hannover, Germany

Keywords: Gaussian processes, Fibonacci numbers, Lucas numbers, integral equations, empirical Fourier transform, testing for normality, testing for symmetry
Received by editor(s): May 15, 1995
Communicated by: Wei-Yin Loh
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society