ON THE PLURICANONICAL MAP OF THREEFOLDS OF GENERAL TYPE

DONG-KWAN SHIN

(Communicated by Eric M. Friedlander)

Abstract. Let X be a smooth minimal threefold of general type and let n be an integer > 1. Assume that the image of the pluricanonical map Φ_n of X is a curve. Then a simple computation shows that n is necessarily 2 or 3. When $n = 2$ with a numerical condition or when $n = 3$, we obtain two inequalities $\chi(O_X) \leq \min\{-1, 2 - 2q_1\}$ and $q_1 \leq \frac{3}{14}K_X^3 + 1$, where q_1 is the irregularity of X and $\chi(O_X)$ is the Euler characteristic of X.

Throughout this paper, we are working over the complex number field \mathbb{C}.

In this paper, we have studied the case that the image C of the pluricanonical map Φ_n is a curve for an integer $n > 1$. In this case, a simple calculation shows $n = 2$ or 3. Resolve the base locus of Φ_n. Then we have two terms 'b' and 'c' explained just below Proposition 1. When $n = 2$ with additional numerical conditions or when $n = 3$, we may have some information about Φ_n from these two terms, which are explained in Corollary of Proposition 2 and Proposition 3. Using this information, we obtain two inequalities $\chi(O_X) \leq \min\{-1, 2 - 2q_1\}$ and $q_1 \leq \frac{3}{14}K_X^3 + 1$, which are given in Theorems 2 and 3.

Now, let's set up our notations. Let X be a smooth projective variety and let D be a divisor on X. Denote by K_X the canonical divisor of X. Denote by Φ_n the rational map associated to the complete linear system $|nK_X|$. Denote by $h^i(X, O_X(D))$ the dimension of $H^i(X, O_X(D))$. Let $Bs|D|$ mean the base locus of $|D|$. Let's denote the genus of X by $p_g(X)$ and $h^i(X, O_X)$ by $q_i(X)$ (or simply p_g and q_i unless there is any confusion.) Denote by \sim the linear equivalence and by \equiv the numerical equivalence. For a real number r, $[r]$ means the greatest among the integers less than or equal to r.

Theorem 1 (Kawamata-Viehweg vanishing theorem). Let X be a nonsingular projective variety. If D is a nef and big divisor on X, then $H^i(X, O_X(K_X + D)) = 0$ for all $i > 0$.

For a reference, see KMM [5].

Lemma. Let X be a smooth projective threefold, and let D be a divisor on X. Then we have the following:

Received by the editors June 12, 1995.

1991 Mathematics Subject Classification. Primary 14E05, 14J30.

Key words and phrases. Threefold of general type, pluricanonical map, fiber space, Euler characteristic.

This paper is supported by KOSEF and Dae-Yang Foundation.
(a) \(\chi(\mathcal{O}_X(D)) = D^3/6 - K_X \cdot D^2/4 + D \cdot (K_X^2 + c_2)/12 + \chi(\mathcal{O}_X) \), where \(c_2 \) is the second Chern class of \(X \). Moreover \(\chi(\mathcal{O}_X) = -c_2 \cdot K_X/24 \).

(b) \(K_X \cdot D^2 \) is even.

(c) \(p_n := \frac{\dim h^0(X, \mathcal{O}_X(nK_X))}{n} = \frac{n(n-1)(2n-1)}{12} K_X^3 + (1-2n)\chi(\mathcal{O}_X) \) for \(n \geq 2 \) and \(\chi(\mathcal{O}_X) < 0 \) when \(K_X \) is nef and big.

Proof. (a) comes from the Riemann-Roch theorem.

(b) comes from the following:

\[\chi(\mathcal{O}_X(D)) + \chi(\mathcal{O}_X(-D)) = -K_X \cdot D^2/2 + 2\chi(\mathcal{O}_X) \in \mathbb{Z}. \]

(c) comes from (a) and the Kawamata-Viehweg vanishing theorem. We have \(\chi(\mathcal{O}_X) < 0 \) since \(-c_2 \cdot K_X \leq -K_X^3/3 \). (See Miyaoka [8].) \(\square \)

Proposition 1. Let \(C \) be a nondegenerate curve of degree \(a \) in \(\mathbb{P}^n \). Then we have

(a) If \(n \leq a < 2n \), then \(p_g(C) \leq a - n \).

(b) If \(2n \leq a \), then \(p_g(C) \leq \frac{m(m-1)}{2}(n-1) + mr \), where \(m = \left[\frac{a-1}{n-1} \right] \) and
\[
a - 1 = m(n-1) + r.
\]

Proof. See Griffiths & Harris [2], p. 253. \(\square \)

We are going to use the following notations in the rest of this paper.

Let \(X \) be a smooth projective threefold of general type with \(K_X \) nef. Let \(n \) be a positive integer \(\geq 2 \).

Suppose that the dimension of the image \(C \) of \(\Phi_n \) is 1.

Let \(\dim nK_X = \dim M + Z \), where \(\dim M \) and \(Z \) are the moving part and fixed part of \(\dim nK_X \) respectively. Let \(f : X' \to X \) be the resolution of the base locus of \(\Phi_n \). If \(\dim nK_X \neq 0 \), i.e., \(f \) is a succession of blow-ups along nonsingular centers of codimension \(\geq 2 \) in the base locus such that \(g = \Phi_n \circ f \) is a morphism. Let \(g = k \circ h \) be the Stein factorization. Observe that \(C' \) is normal and hence smooth.

\[
\begin{array}{c}
X' \xrightarrow{h} C' \\
\downarrow f \quad \downarrow k \\
X \xrightarrow{\Phi_n} C
\end{array}
\]

Let \(a = \deg C \) in \(\mathbb{P}^{p_n-1} \), and let \(b = \deg k \). Recall that \(C \) is a nondegenerate curve in \(\mathbb{P}^{p_n-1} \). Let \(S \) be the general fiber of \(h \).

We have \(K_{X'} = f^*(K_X) + E' \) and \(|f^*nK_X| = |M'| + Z' \), where \(E' \) is the ramification divisor of \(f \) supported on the exceptional locus of \(f \) and \(Z' \) is the fixed part of \(|f^*nK_X| \). We have \(M' = abS \). Since \(f^*K_X \) is nef, \(f^*K_X^2 \cdot Z' \geq 0 \). Hence

\[nK_X^3 = n(f^*K_X^3) = (abS + Z')f^*K_X^2 \geq abf^*K_X^2 \cdot S. \]

Let \(c = f^*K_X^2 \cdot S \). Since \(f^*K_X \) is nef and big, and \(S \) is nef and not numerically equivalent to 0, we have \(f^*K_X^2 \cdot S \geq 1 \). Hence

\[(1) \quad \frac{nK_X^3}{bc} \geq a \geq p_n - 1. \]

From the inequality (1) and Lemma, the image of \(\Phi_n \) can be a curve only when \(n \) is 2 or 3. Moreover, we have \(1 \leq bc \leq 3 \) and in particular, \(bc = 1 \) when \(n = 3 \).
Proposition 2 (cf. Matsuki [7]). If dim \(\text{Im } \Phi_n = 1 \), then \(S \) is a surface of general type and \(S' \) has \(K_{S'}^2 = f^*K_X^2 \cdot S \), where \(\pi : S \to S' \) is a morphism of \(S \) to its minimal surface \(S' \).

Proof. The easy addition formula ‘\(\kappa(X) \leq \kappa(S) + \dim C \)’ implies that \(S \) is the surface of general type, where \(\kappa(X) \) means the Kodaira dimension of \(X \). (For a reference about easy addition formula, see Ueno [9].) We have that

\[
\kappa_{\text{surface of general type}, \text{where }} n
\]

Since \(f \) the exceptional locus of \(f \), \(D = f_*S \) and \(E \) is an effective divisor supported on the exceptional locus of \(f \). So,

\[
nf^*K_X^2 \cdot S = nf^*K_X^2 \cdot D = (abD + Z) \cdot K_X \cdot D \geq abK_X \cdot D^2.
\]

Since \(D^2 \) is an effective 1-cycle and \(K_X \) is nef, \(K_X \cdot D^2 \geq 0 \). If \(K_X \cdot D^2 \neq 0 \), then \(nf^*K_X^2 \cdot S \geq 2a \geq 2(p_n - 1) \) since \(K_X \cdot D^2 \) is even. This inequality holds true only when \(n = 2 \), \(K_X^3 = 2 \), \(\chi(O_X) = -1 \) and \(f^*K_X^2 \cdot S = 3 \). (Recall that \(2 \leq n \leq 3 \) and \(1 \leq c \leq 3 \).) But it does not satisfy the inequality (1). Hence \(K_X \cdot D^2 = 0 \). So

\[
0 = (abD)^2 \cdot K_X = f^*abD \cdot f^*abD \cdot f^*K_X
\]

Hence we have \(S \cdot E \cdot f^*K_X = 0 \). Let \(\{ E_i \} \) be the irreducible components of \(E \). Clearly \(S \cdot E_i \cdot f^*K_X = 0 \) for each \(i \). By the way of taking \(f \), \(\text{supp}(E) = \text{supp}(E') \). Hence we have \(S \cdot E' \cdot f^*K_X = 0 \), since \(S \cdot E_i \cdot f^*K_X = 0 \) for each \(i \).

Applying the Hodge index theorem to \(S \), we have that \((E'|S)^2 = S \cdot E'^2 \leq 0 \) since \((f^*K_X|S)^2 = f^*K_X^2 \cdot S \geq 1 \). We have \(f^*K_X|S + E'|S \sim K_S \sim \pi^*K_{S'} + L \), where \(L \) is an effective divisor supported on the exceptional locus of \(\pi \). Hence the uniqueness of the Zariski decomposition implies that \(f^*K_X|S \sim \pi^*K_{S'} \).

Corollary. If \(f^*K_X^2 \cdot S = 1 \), then the minimal surface \(S' \) of \(S \) has \(K_{S'}^2 = 1 \), \(q(S) = 0 \) and \(1 \leq p_g(S) \leq 2 \).

Proof. \(K_{S'}^2 = f^*K_X|S|^2 = 1 \) by Proposition 2. Since \(K_{S'}^2 = 1 \), we have that \(q(S) = 0 \) and \(p_g(S) \leq 2 \). (For a reference, see Bombieri [1], p. 212.) Consider the exact sequence

\[
0 \to \mathcal{O}_X(K_X) \to \mathcal{O}_X(K_X + M') \to ab \mathcal{O}_S(K_S) \to 0.
\]

The above exact sequence shows that \(p_g(S) \neq 0 \) since \(M' \) is not fixed.

We have two facts from the condition \(bc = 1 \). The first one is that \(C' \) is birational to the image \(C \) of the pluricanonical map \(\Phi_n \). So we may assume that \(C \) is smooth since the terms we are interested in are birational invariants. The second one is that a general fiber of \(g \) is a surface of general type with its irregularity 0 from Corollary of Proposition 2.

Proposition 3. Suppose that \(bc = 1 \). Then we have that \(1 \leq p_g(S) \leq 2 \) and \(\chi(O_X) \leq (p_g(S) + 1)(1 - q_1) \).
Proof. We have the fiber space \(g : X' \to C \) with connected fiber since \(bc = 1 \). By Corollary of Proposition 2, \(q(S) = 0 \) and \(1 \leq p_g(S) \leq 2 \). We have \(R^1 g_* K_{X'} = 0 \) since \(q(S) = h^1(S, \mathcal{O}_S(K_S)) = 0 \). By spectral sequence, we have that

\[
\begin{align*}
p_g &= h^0(X, \mathcal{O}_X(K_X)) = h^0(C, g_* K_{X'}), \\
q_2 &= h^1(X, \mathcal{O}_X(K_X)) = h^1(C, g_* K_{X'}), \\
qu_1 &= h^2(X, \mathcal{O}_X(K_X)) = h^0(C, R^2 g_* K_{X'}).
\end{align*}
\]

Since \(R^2 g_* K_{X'} = K_C, \ q_1 = p_g(C) \). (For a reference, see Kollár [6].) It is known that \(g_* K_{X'/C} \overset{def}{=} g_* (K_X' \otimes g^* K_{C^{-1}}) \) is semipositive and locally free of rank \(p_g(S) \). So \(\deg g_* K_{X'/C} \geq 0 \). (See Kawamata [4].)

\[
h^0(C, g_* K_{X'}) - h^1(C, g_* K_{X'}) = \deg g_* K_{X'} + p_g(S)(1 - p_g(C))
\]

\[
= \deg g_* K_{X'/C} + p_g(S)(p_g(C) - 1)
\]

\[
\geq p_g(S)(p_g(C) - 1).
\]

So \(p_g - q_2 \geq p_g(S)(q_1 - 1) \). Hence \(-\chi(\mathcal{O}_X) = p_g - q_2 + q_1 - 1 \geq (p_g(S) + 1)(q_1 - 1) \). Now we have \(\chi(\mathcal{O}_X) \leq (p_g(S) + 1)(1 - q_1) \).

\[\square\]

Theorem 2. If \(\dim \text{Im} \Phi_3 = 1 \), then the following hold:

(a) \(-\frac{1}{10}K_X^3 - \frac{1}{5} \leq \chi(\mathcal{O}_X) \leq \min\{-1, 2 - 2q_1\} \). Moreover, \(K_X^3 \geq 8 \).

(b) \(q_1 \leq \frac{1}{22}K_X^3 + 1 \).

Proof. The fact \(bc = 1 \) is given just above Proposition 2. If \(a \geq 2(p_3 - 1) \), then the inequality (1) implies \(3K_X^3/2 \geq p_3 - 1 \). But it is impossible since \(p_3 = \frac{5}{2}K_X^3 - 5\chi(\mathcal{O}_X) \). So \(bc = 1 \) and \(a < 2(p_3 - 1) \). Hence Lemma and Proposition 3 imply \(\chi(\mathcal{O}_X) \leq \min\{-1, 2 - 2q_1\} \). From the inequality (1), we have \(-\frac{1}{10}K_X^3 - \frac{1}{5} \leq \chi(\mathcal{O}_X) \). Moreover, since \(\chi(\mathcal{O}_X) \leq -1 \), \(K_X^3 \geq 8 \).

For (b), by Proposition 1, \(p_g(C) \leq a - (p_3 - 1) \) since the degree \(a \) of \(C \) is less than \(2(p_3 - 1) \). Recall that we have \(q_1 = p_g(C) \) in the proof of Proposition 3. We already know \(a \leq 3K_X^3 \) from (1). Hence

\[
qu_1 = p_g(C) \leq a - (p_3 - 1) \leq 3K_X^3 - p_3 + 1 \leq 1/2K_X^3 + 5\chi(\mathcal{O}_X) + 1.
\]

From (a), \(q_1 \leq 1/2K_X^3 + 5(2 - 2q_1) + 1. \) Hence we have \(q_1 \leq \frac{1}{22}K_X^3 + 1. \)

\[\square\]

Theorem 3. Suppose that \(\dim \text{Im} \Phi_2 = 1 \). If \(bc = 1 \), then we have the following:

(a) \(\chi(\mathcal{O}_X) \leq \min\{-1, 2 - 2q_1\} \).

(b) \(q_1 \leq \frac{3}{14}K_X^3 + 1 \).

Proof. Lemma and Proposition 3 imply (a) clearly.

For (b), we already know \(p_2 - 1 \leq a \leq 2K_X^3 \) from (1). Hence it is enough to consider the following two cases:

Case 1. \(p_2 - 1 \leq a < 2(p_2 - 1) \).
Since $p_2 - 1 \leq a < 2(p_2 - 1)$, Proposition 1 implies that $p_g(C) \leq a - (p_2 - 1)$. Since $bc = 1$, the proof of Proposition 3 implies that $q_1 = p_g(C)$ and $\chi(O_X) \leq 2 - 2q_1$.

\begin{align*}
q_1 = p_g(C) &\leq a - (p_2 - 1) \\
&\leq 2K_X^3 - p_2 + 1 \\
&= \frac{3}{2}K_X^3 + 3\chi(O_X) + 1 \\
&\leq \frac{3}{2}K_X^3 + 3(2 - 2q_1) + 1.
\end{align*}

Hence we have $q_1 \leq \frac{3}{14}K_X^3 + 1$.

Case 2. $2(p_2 - 1) \leq a \leq 2K_X^3$.

Since $2(p_2 - 1) \leq a \leq 2K_X^3$, Proposition 1 implies that

\[p_g(C) \leq \frac{m(m-1)}{2}(p_2 - 2) + mr,
\]

where $m = \left\lfloor \frac{a - 1}{p_2 - 2} \right\rfloor$ and $a - 1 = m(p_2 - 2) + r$.

So, let’s compute m. Since $2(p_2 - 1) \leq a \leq 2K_X^3$, we have that

\[
\frac{2(p_2 - 1) - 1}{p_2 - 2} \leq \frac{a - 1}{p_2 - 2} \leq \frac{2K_X^3 - 1}{p_2 - 2}.
\]

If we modify the above inequalities, we have that

\[
2 + \frac{1}{K_X^3/2 - 3\chi(O_X) - 2} \leq \frac{a - 1}{p_2 - 2} \leq 4 + \frac{12\chi(O_X) + 7}{K_X^3/2 - 3\chi(O_X) - 2}.
\]

Since $\chi(O_X) < 0$, we have that

\[
\frac{1}{K_X^3/2 - 3\chi(O_X) - 2} > 0 \quad \text{and} \quad \frac{12\chi(O_X) + 7}{K_X^3/2 - 3\chi(O_X) - 2} < 0.
\]

Hence we have $m = \left\lfloor \frac{a - 1}{p_2 - 2} \right\rfloor = 2$ or 3.

When $m = 2$, we have that

\begin{align*}
q_1 = p_g(C) &\leq \frac{2 \cdot 1}{2}(p_2 - 2) + 2r \\
&\leq (p_2 - 2) + 2(a - 1 - 2(p_2 - 2)) \\
&\leq 2a - 3p_2 + 4 \\
&\leq 4K_X^3 - 3\left(\frac{K_X^3}{2} - 3\chi(O_X)\right) + 4 \\
&\leq \frac{5}{2}K_X^3 + 9\chi(O_X) + 4 \\
&\leq \frac{5}{2}K_X^3 + 9(2 - 2q_1) + 4.
\end{align*}

Hence $q_1 \leq \frac{5}{38}K_X^3 + \frac{22}{19}$.

When $m = 3$, similarly, we have that $q_1 \leq \frac{3}{37}K_X^3 + \frac{45}{37}$.

Therefore, combining all inequalities about q_1, we have $q_1 \leq \frac{3}{14}K_X^3 + 1$. \(\square\)
Remark. When \(\dim \text{Im} \Phi_2 = 1 \), we assume the condition \(bc = 1 \). At this moment, we don’t have a necessary and sufficient condition to guarantee \(bc = 1 \). But we have some cases which show \(bc = 1 \).

Proposition 4. Suppose that \(\dim \text{Im} \Phi_2 = 1 \). If \(K_X^3 < p_2 - 1 \), then we have that

(a) \(bc = 1 \),

(b) \(-K_X^3/2 - 1/3 \leq \chi(\mathcal{O}_X) < -K_X^3/6 - 1/3 \).

Proof. Since \(K_X^3 < p_2 - 1 \leq a \), we have \(K_X^3 < p_2 - 1 \leq a \leq bc/2 \) from (1). Hence \(bc \) must be 1.

From (1), we have \(-K_X^3/2 - 1/3 \leq \chi(\mathcal{O}_X) \). Since \(K_X^3 < p_2 - 1 \), we have \(\chi(\mathcal{O}_X) < -K_X^3/6 - 1/3 \). Combining these two inequalities, we have

\[
-K_X^3/2 - 1/3 \leq \chi(\mathcal{O}_X) < -K_X^3/6 - 1/3.
\]

\(\Box \)

Proposition 5. Suppose that \(\dim \text{Im} \Phi_2 = 1 \). If \(2(p_2 - 1) \leq a \), then we have

(a) \(bc = 1 \),

(b) \(-K_X^3/6 - 1/3 \leq \chi(\mathcal{O}_X) \leq -1 \).

Proof. Since \(2(p_2 - 1) \leq a \), we have \(2(p_2 - 1) \leq a \leq 2K_X^3/bc \) from (1). If \(bc \geq 2 \), then we have \(2(p_2 - 1) \leq K_X^3 \). But, since \(2(p_2 - 1) = K_X^3 - 6\chi(\mathcal{O}_X) - 2 > K_X^3 \), it is impossible. Hence \(bc = 1 \).

From \(2(p_2 - 1) \leq a \leq 2K_X^3 \), we have \(-K_X^3/6 - 1/3 \leq \chi(\mathcal{O}_X) \).

Remark. When \(\dim \text{Im} \Phi_2 = 1 \), from (1), we may have the following three cases:

\(a \leq 2K_X^3 < 2(p_2 - 1) \), \(a \leq 2(p_2 - 1) \leq 2K_X^3 \), and \(2(p_2 - 1) \leq a \leq 2K_X^3 \). The case we didn’t cover here is the second one \(p_2 - 1 \leq a \leq 2(p_2 - 1) \leq 2K_X^3 \).

REFERENCES

DEPARTMENT OF MATHEMATICS, KONKUK UNIVERSITY, SEOUL, 143–701, KOREA
E-mail address: shindk@cs.sejong.ac.kr