FACTORISATION IN NEST ALGEBRAS

M. ANOUSSIS AND E. G. KATSOU LIS

(Communicated by Palle E. T. Jorgensen)

Abstract. We give a necessary and sufficient condition on an operator A for the existence of an operator B in the nest algebra $\text{Alg}N$ of a continuous nest N satisfying $AA^* = BB^*$ (resp. $A^*A = B^*B$). We also characterise the operators A in $B(H)$ which have the following property: For every continuous nest N there exists an operator B_N in $\text{Alg}N$ satisfying $AA^* = B_NB_N^*$ (resp. $A^*A = B_N^*B_N$).

1. Introduction–Preliminaries

The problem of factorisation of operators with respect to a nest algebra has been studied by many authors [8], [1], [13], [9], [11], [12], [10]. In this work we give a necessary and sufficient condition on an operator A for the existence of an operator B in the nest algebra $\text{Alg}N$ of a continuous nest N satisfying $AA^* = BB^*$ (resp. $A^*A = B^*B$). This result improves Theorem 4.9 in [9] for continuous nests. We also characterise the operators A in $B(H)$ which have the following property: For every continuous nest N there exists an operator B_N in $\text{Alg}N$ satisfying $AA^* = B_NB_N^*$ (resp. $A^*A = B_N^*B_N$).

Throughout this work H denotes a separable Hilbert space and $B(H)$ the space of all bounded operators from H into itself. If V is a subset of H we denote by $[V]$ the linear span of V. By subspace of H we mean a subset of H which is closed under addition of vectors and scalar multiplication. If $(V_n)_{n=1}^\infty$ is a sequence of closed mutually orthogonal subspaces of H we denote by $\bigoplus_{n=1}^\infty V_n$ the closure of their linear span. If A is in $B(H)$ we denote by $r(A)$ the range of A and by $\text{coker}A$ the orthogonal complement of the kernel of A. An operator range is the range of a bounded operator in H. A nest in H is a totally ordered set of closed subspaces of H containing $\{0\}$ and H which is closed under intersection and closed span. If N is a nest in H and P is in N we will denote by the same symbol the orthogonal projection on the subspace P. If N is a nest we denote by N^\perp the nest $\{P^\perp : P \in N\}$. A nest N is continuous if $P = \bigcup_{Q < P} Q$ for every P in N. Given a nest N the associated nest algebra $\text{Alg}N$ is the set of operators A in $B(H)$ satisfying $PAP = AP$ for every P in N. For a general discussion of nest algebras the reader is referred to [3].
2. Proper subspaces

We introduce in this section the notion of N-proper subspace for a nest N. We show that a closed subspace of H of co-finite dimension is N-proper for every continuous nest N.

Definition 1. Let N be a nest on H. A vector x in H is called N-proper if $x = Px$ for some P in N, $P \neq I$.

Definition 2. Let N be a nest on H. A subspace V of H is called N-proper if $[V \cap P : P \in N, P \neq I]$ is dense in V.

Lemma 3. Let N be a continuous nest on H. Let $\{P_n\}_{n=1}^{\infty}$ be a sequence of elements of N such that: $P_n \neq I$, $P_{n+1} \geq P_n$, and P_n converges strongly to I. Let x_1, x_2, \ldots, x_m be orthonormal vectors in H. Set $V = [x_1, x_2, \ldots, x_m]^\perp$. Then:

(a) There exists n_0 such that $P_n x_1, P_n x_2, \ldots, P_n x_m$ are linearly independent for $n \geq n_0$.
(b) We set $V_1 = P_1 H \oplus P_1 V^\perp$ and we define inductively

$$V_n = P_n H \oplus \left(\sum_{i=1}^{n-1} V_i \oplus P_n V^\perp \right).$$

Then $V = \sum_{i=1}^{\infty} V_i$.

Proof. (a) The Grammian of the vectors $P_n x_1, P_n x_2, \ldots, P_n x_m$ converges to the Grammian of the vectors x_1, x_2, \ldots, x_m which equals 1.

(b) It is easy to see that the V_n’s are mutually orthogonal and that V_n is contained in V for every n. We show that $\left(\sum_{i=1}^{\infty} V_i \right) \oplus V^\perp = H$. Let x be a vector in H which is orthogonal to $\left(\sum_{i=1}^{\infty} V_i \right) \oplus V^\perp$. For each n the vector $P_n x$ is orthogonal to $\sum_{i=1}^{n} V_i$ so $P_n x$ is in $P_n V^\perp$. For $n \geq n_0$ we have $P_n x = P_n \left(\sum_{i=1}^{m} a_i x_i \right)$, where the a_i’s are complex numbers not depending on n. So $x = \lim_{n \to \infty} P_n x = \sum_{i=1}^{m} a_i x_i$. But x is orthogonal to V^\perp, hence it is 0.

Proposition 4. Let N be a continuous nest and V a closed subspace of H of co-finite dimension. Then V is N-proper.

Proof. It follows immediately from Lemma 3.

Let N be a continuous nest on H and A an operator in $B(H)$. Consider the set $\bigcup_{P \in N, P \neq I} A^{-1}(P)$. This set is equal to $\bigcup_{P \in N, P \neq I} \ker(P^2 - A)$. If A is an $\text{Alg}N$ the set $\bigcup_{P \in N, P \neq I} A^{-1}(P)$ contains $\bigcup_{P \in N, P \neq I} P$; hence it is dense in H. There exist operators A in $B(H)$ for which $\bigcup_{P \in N, P \neq I} A^{-1}(P)$ is not dense in H. We construct such an operator in Example 9. We will prove in the next section that $\bigcup_{P \in N, P \neq I} A^{-1}(P)$ is dense in H if and only if there exists an operator B in $\text{Alg}N$ such that $AA^* = BB^*$. We first prove some preliminary results.

Lemma 5. Let N be a nest on H and A an operator in $B(H)$. The following are equivalent:

(a) The set $\bigcup_{P \in N, P \neq 0} (A^*)^{-1}(P^\perp)$ is dense in H.
(b) $\bigcap_{P \in N, P \neq 0} r(AP) = \{0\}$.

Proof. We have that $(A^*)^{-1}(P^\perp) = \{x \in H : A^* x \in P_0^\perp\} = \{x \in H : P^\perp A^* x = A^* x\} = \ker(PA^*) = r(AP)^\perp$ and $\bigcup_{P \in N, P \neq 0} r(AP) = \{0\}$ is dense in $(\bigcap_{P \in N, P \neq 0} r(AP))^\perp$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proposition 6. Let N be a nest on H and A an operator in $B(H)$.
(a) Suppose that the set $\bigcup_{P \in N, P \neq I} A^{-1}(P)$ is dense in H. Then $r(A)$ is N-proper.
(b) Suppose that $r(A)$ is N-proper and closed. Then the set $\bigcup_{P \in N, P \neq I} A^{-1}(P)$ is dense in H.

Proof. (a) The set $A(\bigcup_{P \in N, P \neq I} A^{-1}(P))$ is contained in $[r(A) \cap P : P \in N, P \neq I]$ and is dense in $r(A)$.
(b) The restriction of A to coker A is an isomorphism from coker A onto $r(A)$. Hence $(\bigcup_{P \in N, P \neq I} A^{-1}(P)) \cap \text{coker} A = A^{-1}(\bigcup_{P \in N, P \neq I} P) \cap \text{coker} A$ is dense in coker A. Therefore $\bigcup_{P \in N, P \neq I} A^{-1}(P)$ is dense in H. \hfill \Box

Proposition 7. Let N be a nest on H and A an operator in $B(H)$.
(a) Suppose that $\bigcap_{P \in N, P \neq 0} r(AP) = \{0\}$. Then coker A is N^\perp-proper.
(b) Suppose that coker A is N^\perp-proper and $r(A)$ is closed. Then $\bigcap_{P \in N, P \neq 0} r(AP) = \{0\}$.

Proof. (a) It follows from Lemma 5 that $\bigcup_{P \in N, P \neq 0} (A^*)^{-1}(P^\perp)$ is dense in H. It follows from Proposition 6 that $r(A^*)$ is N^\perp-proper. Since the closure of an N^\perp-proper subspace is an N^\perp-proper subspace we conclude that coker A is N^\perp-proper.
(b) It follows from [2, Ch. VI, Th. 1.10] that $r(A^*)$ is closed. Hence $r(A^*) = \text{coker} A$. It follows from Proposition 6 that $\bigcup_{P \in N, P \neq 0} (A^*)^{-1}(P^\perp)$ is dense in H. Therefore from Lemma 5 we conclude that $\bigcap_{P \in N, P \neq 0} r(AP) = \{0\}$. \hfill \Box

3. Factorisation

In this section we prove our main results and give some applications.

Theorem 8. Let N be a continuous nest and A an operator in $B(H)$. The following are equivalent:
(a) There exists an operator B in $\text{Alg} N$ such that $AA^* = BB^*$.
(b) The set $\bigcup_{P \in N, P \neq I} A^{-1}(P)$ is dense in H.

Proof. Assume (a) holds. In order to prove (b) it is enough to prove that the set $\bigcup_{P \in N, P \neq I} (A^{-1}(P) \cap \text{coker} A)$ is dense in coker A. Using polar decomposition one can see that there exists a partial isometry U with domain coker A and range coker B such that $A = BU$. We put $R = \bigcup_{P \in N, P \neq I} (A^{-1}(P) \cap \text{coker} A)$ and $M = \text{coker} A \ominus R$. We will show that $M = \{0\}$. Take m in M and P in $N, P \neq I$. Since $r(A) = r(B)$ ([5, Th. 1]), we have $BPUm = AxP$ for some xP in coker A. Since $BPUm$ is in P, xP is in $A^{-1}(P) \cap \text{coker} A$ and hence in R. We have $BPUm = AxP = BUxP$ and so $PUm - UxP$ is in ker B. We have $PUm = PUm - UxP + UxP$ which belongs to ker $B \oplus UR$. Note that the decomposition $H = \ker B \oplus UR \oplus UM$ is orthogonal. Therefore $Um = \lim_{P \in N, P \neq I, \rho \to 1} PPUm$ is in $(\ker B \oplus UR) \cap UM = \{0\}$. We conclude that $m = 0$.

Assume (b) holds. It is then clear that the set $\bigcup_{P \in N, P \neq I} (A^{-1}(P) \cap \text{coker} A)$ is dense in coker A. Take a sequence $\{P_n\}_{n=0}^\infty$ of elements of N such that: $P_0 = 0, P_{n+1} > P_n, P_n \neq I$ for every n and P_n converges strongly to I. We set: $R_1 = A^{-1}(P_1) \cap \text{coker} A, R_n = (A^{-1}(P_n) \cap \text{coker} A) \ominus R_{n-1}$ for $n > 1$.

It is clear that R_n is orthogonal to R_m for $n \neq m$ and that R_n is contained in coker A for every n. We show that coker $A = \sum_{n=1}^\infty \oplus R_n$. Take y in coker A. If y is orthogonal to $\sum_{n=1}^\infty \oplus R_n$, then y is orthogonal to $A^{-1}(P_n) \cap \text{coker} A$ for every...
n; hence y is orthogonal to \((\bigcup_{n=1}^{\infty} (A^{-1}(P_n) \cap \text{coker}A))\). Since \((\bigcup_{n=1}^{\infty} (A^{-1}(P_n) \cap \text{coker}A))\) is dense in \text{coker}A, y = 0, and so \text{coker}A = \bigoplus_{n=1}^{\infty} R_n.

Consider for \(n \geq 1\) a partial isometry \(V_n\) with domain contained in \((P_{n+1} - P_n)H\) and range \(R_n\). Put \(V = \bigoplus_{n=1}^{\infty} V_n\). Then \(V\) is a partial isometry with range \text{coker}A. Note that \(A = AVV^*.\) We show that \(AV\) belongs to \(\text{Alg}N\). Let \(P\) be in \(N\) and \(x\) be a vector in \(P\). We show that \(AVx\) is in \(P\). If \(P \leq P_1\) we have \(AVx = 0\). If \(P > P_1\) there exists \(m \geq 1\) such that \(P_m = P \leq P_{m+1}\). Then

\[AVx = A(\sum_{n=1}^{m} V_n)x = (\sum_{n=1}^{m} V_n)x \text{ is contained in } (\bigoplus_{n=1}^{m} R_n). \]

Therefore \(AVx\) is in \(A(\sum_{n=1}^{m} R_n)\) which is contained in \(P_m\). Since \(P_m < P\) we conclude that \(AVx\) is in \(P\).

Put \(B = AV\). Then \(BB^* = AVV^*A^* = AA^*\) and \(B\) is in \(\text{Alg}N\).

\[\square \]

Remark. Theorem 8 remains true under the weaker assumption that \(N\) is a nest which satisfies \(H = \bigcup_{Q \subset H} Q\).

Let \(N\) be a continuous nest. We give an example of an operator with \(N\)-proper range which does not satisfy condition (b) of Theorem 8.

Example 9. Let \(N\) be a continuous nest. Take a sequence \(\{P_n\}_{n=0}^{\infty}\) of elements of \(N\) such that:

\[P_0 = 0, \quad P_{n+1} > P_n, \quad P_n \neq I \quad \text{for every } n \text{ and } P_n \text{ converges strongly to } I. \]

For each \(n\) consider a vector \(e_n\) of norm 1 and such that \((P_{n+1} - P_n)e_n = e_n\). Put \(y = \sum_{n=1}^{\infty} n^{-1}e_n\). Let \(A\) be the operator defined by: \(Ae_n = n^{-1}e_n\) for \(n \geq 1\), \(Ae_0 = y\) and \(A\) is 0 on \([e_n : n = 0, 1, 2, \ldots]♀\). Then \(r(A)\) is \(N\)-proper and it is easy to see that \(A\) does not satisfy condition (b) of Theorem 8. In fact, \(e_0\) is orthogonal to \(\bigcup_{P \in N, P \neq I} A^{-1}(P)\). So \(A\) does not satisfy condition (a) of Theorem 8.

Corollary 10. Let \(N\) be a continuous nest and \(A\) an operator in \(B(H)\). The following are equivalent:

(a) There exists an operator \(B\) in \(\text{Alg}N\) such that \(A^*A = B^*B\).

(b) \(\bigcap_{P \in N, P \neq I} r(AP) = \{0\}\).

Proof. There exists an operator \(B\) in \(\text{Alg}N\) such that \(A^*A = B^*B\) if and only if there exists an operator \(C\) in \(\text{Alg}N^{\perp}\) such that \(A^*A = CC^*\). The corollary follows now from Theorem 8 and Lemma 5.

\[\square \]

Corollary 11. Let \(N\) be a continuous nest and \(A\) an operator in \(B(H)\). Suppose \(A\) is onto (resp. one-to-one and \(r(A)\) is closed). Then there exists an operator \(B\) in \(\text{Alg}N\) such that \(AA^* = BB^*\) (resp. \(A^*A = B^*B\)).

Proof. It follows from Proposition 6 and Theorem 8 (resp. from Proposition 7 and Corollary 10).

\[\square \]

Corollary 12. Let \(N\) be a continuous nest and \(Q\) a projection in \(B(H)\). Then there exists an operator \(B\) in \(\text{Alg}N\) such that \(Q = BB^*\) (resp. \(Q = B^*B\)) if and only if \(QH\) is \(N\)-proper (resp. \(N^\perp\)-proper).

Proof. It follows from Proposition 6 and Theorem 8 (resp. from Proposition 7 and Corollary 10).

\[\square \]

The following corollary answers a question posed by Shields in [13].
Corollary 13. Let N be a continuous nest and A a positive operator in $B(H)$. Assume there exists an operator B in $\text{Alg}N$ such that $A^2 = B^*B$. Then there exists an operator C in $\text{Alg}N$ such that $A = C^*C$.

Proof. We have to show that if $\bigcap_{P \in N, P \neq 0} \overline{r(AP)} = \{0\}$, then $\bigcap_{P \in N, P \neq 0} \overline{r(A^{1/2}P)} = \{0\}$. Let y be in $\bigcap_{P \in N, P \neq 0} \overline{r(A^{1/2}P)}$. Then $A^{1/2}y$ is in $\bigcap_{P \in N, P \neq 0} \overline{r(AP)} = \{0\}$; hence $A^{1/2}y = 0$. So y is in $\text{Ker} A^{1/2}$. Since y is also in $r(A^{1/2})$ we see that $y = 0$. □

We will characterise now the operators that satisfy condition (a) of Theorem 8 (resp. condition (a) of Corollary 10) for every continuous nest.

Proposition 14. Let V be an operator range. Assume V is not of co-finite dimension in H. Then there exists a continuous nest N in H such that $V \cap P = \{0\}$ for every P in N, $P \neq I$.

Proof. (i) We first show that there exists a non-closed operator range W which contains V. We will use the following fact: If V_1, V_2 are operator ranges, then $V_1 + V_2$ is an operator range [7, Ch. I, 1]. If V is closed we consider an operator range U which is non-closed and is contained in V^\perp. We set $W = V + U$. Then W is an operator range which is non-closed and contains V.

(ii) It follows from (i) above that we may assume that V is non-closed. An operator range R is called of type J_S (Dixmier’s notation) if it is dense and there exists a sequence $\{H_n\}_{n=0}^\infty$ of closed mutually orthogonal infinite dimensional subspaces of H such that $R = \{\sum_{n=0}^\infty x_n : x_n \in H_n \text{ and } \sum_{n=0}^\infty (2^n \|x_n\|)^2 < \infty\}$. It is shown in the proof of Theorem 3.6 in [6] that any non-closed operator range is contained in an operator range of type J_S. It follows that there exists an operator range S of type J_S such that $V \subset S$. It follows from Theorem 3.6 in [6] that there exists a unitary operator U on H such that $US \cap S = \{0\}$. We conclude that there exists an operator range T of type J_S such that $V \cap T = \{0\}$. Now it is easy to see that there exists a continuous nest N in H such that $P \subset T$ for every P in N, $P \neq I$. It follows that $P \cap V = \{0\}$ for every P in N, $P \neq I$. □

Theorem 15. Let A be an operator in $B(H)$.

(a) There exists for every continuous nest N an operator B_N in $\text{Alg}N$ satisfying $AA^* = B_NB_N^*$ if and only if A is a right Fredholm operator.

(b) There exists for every continuous nest N an operator B_N in $\text{Alg}N$ satisfying $A^*A = B_N^*B_N$ if and only if A is a left Fredholm operator.

Proof. (a) Assume that for every continuous nest N there exists an operator B_N in $\text{Alg}N$ satisfying $AA^* = B_NB_N^*$. It follows from Theorem 8 and Proposition 6 that $r(A)$ is N-proper for very continuous nest N. Proposition 14 implies that $r(A)$ is of co-finite dimension in H. If the range of an operator is of co-finite dimension, then it is closed [4, Prop. 3.7]. Therefore A is a right Fredholm operator. Assume now that A is a right Fredholm operator. Then $r(A)$ is closed and of co-finite dimension in H. By Proposition 4, $r(A)$ is N-proper for every continuous nest N. It follows then from Proposition 6 and Theorem 8 that for every continuous nest N there exists an operator B_N in $\text{Alg}N$ satisfying $AA^* = B_NB_N^*$.

(b) Consider the following properties of an operator A:

(i) There exists for every continuous nest N an operator B_N in $\text{Alg}N$ satisfying $AA^* = B_NB_N^*$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
(ii) There exists for every continuous nest N an operator B_N in $\text{Alg} N$ satisfying $A^*A = B_N^*B_N$.

Since a nest N is continuous if and only if the nest N^\perp is continuous we see that an operator A has property (i) if and only if the operator A^* has property (ii). The assertion follows now from (a).

Added in proof

After this work was submitted a paper of G. T. Adams, J. Froehlich, P. J. McGuire, and V. I. Paulsen entitled *Analytic reproducing kernels and factorisation*, Indiana Univ. Math. J. 43 (1994), came to our attention. Condition (b) of our Theorem 8 is essentially the same with the density condition given in Theorem 3.1 of this paper in a different but related context.

References

Department of Mathematics, University of the Aegean, Karlovassi 83200, Greece

Department of Mathematics, East Carolina University, Greenville, North Carolina 27858