COVERING BY COMPLEMENTS OF SUBSPACES, II

W. EDWIN CLARK AND BORIS SHEKHTMAN

(Communicated by Jeffry N. Kahn)

Abstract. Let V be an n-dimensional vector space over an algebraically closed field K. Define $\gamma(k,n,K)$ to be the least positive integer t for which there exists a family E_1, E_2, \ldots, E_t of k-dimensional subspaces of V such that every $(n-k)$-dimensional subspace F of V has at least one complement among the E_i's. Using algebraic geometry we prove that $\gamma(k,n,K) = k(n-k) + 1$.

1. Introduction

Take $V = V(n,K)$ to be an n-dimensional vector space over the algebraically closed field K. As usual a subspace F of V is a complement of the subspace E of V if $V = E \oplus F$, i.e., if $E + F = V$ and $E \cap F = \{0\}$. We let $c(E)$ denote the set of all complements of E in V and we write $G(k,n)$ for the set of all k-subspaces (= k-dimensional subspaces) of V. If $E \in G(k,n)$ then $c(E) \subseteq G(n-k,n)$. Define $\gamma(k,n,F)$ to be the least positive integer t such that there exist k-subspaces E_1, E_2, \ldots, E_t of V satisfying

\[c(E_1) \cup c(E_2) \cup \cdots \cup c(E_t) = G(n-k,n). \]

If (1) holds we say that all $(n-k)$-subspaces of V are covered by the E_i's.

In [1] we studied this problem for an arbitrary field K. Among other things we showed that in general $\gamma(k,n,K)$ depends on the field K. In particular, we showed that $\gamma(2,4,K)$ is 5 if K is quadratically closed and is 4 otherwise. We conjectured that $\gamma(k,n,K) = k(n-k) + 1$ if K is algebraically closed. Here we prove this conjecture using results from algebraic geometry.

2. The lower bound $k(n-k) + 1 \leq \gamma(k,n,K)$

Let $\Lambda^k(V)$ denote the k-vectors in the exterior algebra $\Lambda(V)$ of V. We let $D(k,n)$ denote the set of all non-zero decomposable k-vectors $\alpha = v_1 \wedge v_2 \wedge \cdots \wedge v_k$ where v_1, v_2, \ldots, v_k are linearly independent vectors in V. Let $\langle \alpha \rangle$ denote the 1-dimensional subspace of $\Lambda^k(V)$ generated by α and write

\[D(k,n) = \{ \langle \alpha \rangle | \alpha \in D(k,n) \}. \]

If v_1, v_2, \ldots, v_k is a basis for $E \in G(k,n)$, then the mapping $E \mapsto \langle v_1 \wedge \cdots \wedge v_k \rangle$ is a bijection from $G(k,n)$ to $D(k,n)$. It is well-known that this gives $G(k,n)$ the

(Received by the editors November 22, 1994 and, in revised form, July 6, 1995.
1991 Mathematics Subject Classification. Primary 51A99; Secondary 14N10, 15A75, 15A99.
Key words and phrases. Vector space, subspace, complement, projective variety, Grassmannian.)
structure of an irreducible projective variety (the Grassmannian) of dimension
$k(n-k)$ in $\mathbb{P}^N = \mathbb{P}(\Lambda^k(V))$ where $N = \binom{n}{k} - 1$. We identify $G(k, n)$ with $D(k, n)$.

Now for any positive integer t let $G(k, n)^t$ be the product variety of $G(k, n)$ with itself t times. Let $E = (E_1, \ldots, E_t) \in G(k, n)^t$. For each i let $E_i = \langle \epsilon_i \rangle$ for some decomposable $\epsilon_i \in \Lambda^k(V)$. Define the mappings:

$$\varphi_i : \Lambda^{n-k}(V) \to \Lambda^n(V) \quad \text{by} \quad \varphi_i(\xi) = \epsilon_i \wedge \xi$$

for $i = 1, \ldots, t$ and let

$$\mathcal{K}(E) = \ker(\varphi_1) \cap \ker(\varphi_2) \cap \cdots \cap \ker(\varphi_t).$$

Note that $\mathcal{K}(E)$ is a subspace of $\Lambda^{n-k}(V)$.

Lemma 1. For $E \in G(k, n)^t$ the following two conditions are equivalent:

(a) $c(E_1) \cup c(E_2) \cup \cdots \cup c(E_t) = G(n - k, n)$,

(b) $D(n - k, n) \cap \mathcal{K}(E) = \emptyset$.

Proof. This is an immediate consequence of the fact that if $F = \langle \alpha \rangle \in G(n - k, n)$ for some $\alpha \in D(n - k, n)$, then $E_i \cap F = \{0\}$ if and only if $\epsilon_i \wedge \alpha \neq 0$. \hfill \square

Lemma 2. If $\gamma(k, n, K) = t$ and $E = (E_1, \ldots, E_t) \in G(k, n)^t$ satisfies

$$c(E_1) \cup c(E_2) \cup \cdots \cup c(E_t) = G(n - k, n),$$

then

$$\dim(\mathcal{K}(E)) = \binom{n}{k} - t.$$

Proof. Since φ_i is a linear mapping from the $\binom{n}{k}$-dimensional vector space $\Lambda^{n-k}(V)$ to the 1-dimensional vector space $\Lambda^n(V)$, it suffices to show that the mappings

$$\varphi_i \in \text{hom}(\Lambda^{n-k}(V), \Lambda^n(V)), \quad i \in \{1, \ldots, t\},$$

are linearly independent. To see this we first note that the elements ϵ_i are linearly independent in $\Lambda^{n-k}(V)$. Suppose not; then we can assume that $\epsilon_i = \sum_{s=1}^t a_s \epsilon_s$. It follows that $\bigcap_{i=1}^t \ker(\varphi_i) = \bigcap_{i=1}^t \ker(\varphi_i)$ which implies by Lemma 1 that

$$c(E_1) \cup c(E_2) \cup \cdots \cup c(E_t) = G(n - k, n)$$

and hence $\gamma(k, n, K) \leq t - 1$, a contradiction. Now assume that the mappings $\varphi_1, \ldots, \varphi_t$ are linearly dependent. Say, $\sum_{i=1}^t a_i \varphi_i = 0$. This means that for all $\xi \in \Lambda^{n-k}(V)$ we have $0 = \sum_{i=1}^t a_i (\epsilon_i \wedge \xi) = (\sum_{i=1}^t a_i \epsilon_i) \wedge \xi$. So it suffices to observe that if $\delta \in \Lambda^k(V)$ and $\delta \wedge \xi = 0$ for all $\xi \in \Lambda^{n-k}(V)$ then $\delta = 0$. \hfill \square

Lemma 3. If K is any algebraically closed field, then

$$k(n-k) + 1 \leq \gamma(k, n, K).$$

Proof. Suppose $\gamma(k, n, K) = t \leq k(n-k)$. Then there exists $E = (E_1, \ldots, E_t) \in G(k, n)^t$ such that $c(E_1) \cup \cdots \cup c(E_t) = G(n - k, n)$. So by Lemmas 1 and 2 there is a linear subspace $\mathcal{K}(E)$ of $\Lambda^{n-k}(V)$ such that $D(k, n) \cap \mathcal{K}(E) = \emptyset$ and $\mathcal{K}(E)$ has affine dimension $\binom{n}{k} - t$ which is at least $\binom{n}{k} - k(n-k)$. Let \mathcal{K}' denote the
corresponding projective subspace of \(\mathbb{P}(\Lambda^{n-k}(V)) \). Then \(\mathcal{K}' \cap G(n-k,n) = \emptyset \). But using projective dimensions we have [3, Proposition 11.4]

\[
\dim(\mathcal{K}') + \dim(G(n-k,n)) \geq \binom{n}{k} - k(n-k) - 1 + k(n-k) \\
\geq \binom{n}{k} - 1 = \dim(\mathbb{P}(\Lambda^{n-k}(V)))
\]

and it follows that \(\mathcal{K}' \cap G(n-k,n) \neq \emptyset \) which is a contradiction. \(\square \)

3. The upper bound \(\gamma(k,n,K) \leq k(n-k) + 1 \)

Lemma 4. If \(K \) is algebraically closed, then \(\gamma(k,n,K) \leq k(n-k) + 1 \).

Proof. Let \(\nu = k(n-k) \) denote the dimension of \(G(k,n) \) (and \(G(n-k,n) \)) as a projective variety. Let

\[
A = G(k,n)^{\nu+1}.
\]

Then \(A \) is a projective variety of dimension \(\nu(\nu + 1) \). For every \(F \in G(n-k,n) \) define

\[
B(F) = \{ E \in G(k,n) | E \cap F \neq 0 \}.
\]

Now \(B(F) \) is an irreducible projective variety with

\[
\dim(B(F)) = \nu - 1.
\]

For \(F \in G(n-k,n) \) define

\[
C(F) = B(F)^{\nu+1}.
\]

Then

\[
\dim(C(F)) = (\nu + 1)(\nu - 1) = \nu^2 - 1.
\]

Now set

\[
C = \bigcup_{F \in G(n-k,n)} C(F).
\]

Note that if \(C \) is properly contained in \(A \), then there exists \(E = (E_1, \ldots, E_{\nu+1}) \in A - C \). Then for all \(F \in G(n-k,n) \) we have \(E \notin C(F) \) so there must exist an index \(i \in \{1, \ldots, \nu + 1\} \) such that \(E_i \cap F = 0 \). Hence \(c(E_1) \cup \cdots \cup c(E_{\nu+1}) = G(n-k,n) \) and so \(\gamma(k,n,K) \leq \nu + 1 \), as desired. So it remains only to show that \(C \) is properly contained in \(A \). In fact we claim that \(C \) is a variety of dimension at most \(\dim(A) - 1 = \nu^2 + \nu - 1 \).

To complete the proof we fix \(F_0 \in G(n-k,n) \) and consider the projective variety

\[
D := C(F_0) \times \text{PGL}_n(K).
\]

We note that

\[
\dim(D) = \dim(C(F_0)) + \dim(\text{PGL}(n,K)) = \nu^2 - 1 + n^2 - 1.
\]

An element \(M \) of \(\text{PGL}(n,K) \) induces a linear automorphism of \(\mathbb{P}(\Lambda^k(V)) \) which induces in turn an automorphism of \(G(k,n) \). Abusing notation we write \(U \mapsto MU \).
to indicate the latter automorphism. Now we define \(\varphi : D \to C \) as follows: For \((E, M) \in D\)

\[
\varphi(E, M) = (ME_1, ME_2, \ldots, ME_{\nu+1}).
\]

Clearly \(\varphi \) is a regular surjection. Hence by \([3, \text{Theorem 11.12}]\)

\[
\dim(D) = \dim(C) + \mu
\]

where

\[
\mu = \min\{\dim(\varphi^{-1}(E')), \ E' \in C\}.
\]

This shows that

\[
\dim(C) = \nu^2 - 1 + n^2 - 1 - \mu.
\]

So to prove that \(\dim(C) \leq \nu^2 + \nu - 1 \) it suffices to prove that \(n^2 - \nu - 1 \leq \mu \). To see this consider the subset \(G(F) \) of \(PGL_n(K) \) whose elements map the fixed \((n - k)\)-subspace \(F_0 \) to the \((n - k)\)-space \(F \). It is easy to see that \(\dim(G(F)) = n^2 - \nu - 1 \). Now if \(E' = (E'_1, \ldots, E'_{\nu+1}) \in C(F) \subseteq C \) then for each \(M \in G(F) \) we have

\[
(M^{-1}E', M) = (M^{-1}E'_1, \ldots, M^{-1}E'_{\nu+1}, M) \in \varphi^{-1}(E').
\]

The mapping \(M \mapsto (M^{-1}E', M) \) is a regular injection from \(G(F) \) into the fiber \(\varphi^{-1}(E') \). It follows that each fiber has dimension at least that of \(G(F) \) and this completes the proof.

Remarks. 1. The above proof shows that almost all \((E_1, \ldots, E_{\nu+1}) \in G(k, n)^{\nu+1}\)

satisfy

\[
c(E_1) \cup c(E_2) \cup \cdots \cup c(E_{\nu+1}) = G(n - k, n)
\]

since the complement \(C \) of the set of such \((\nu + 1)\)-tuples forms a variety of dimension smaller than \(\dim(G(k, n)^{\nu+1}) \).

2. As shown in \([1]\) \(\gamma(2, 4, K) = 4 \) when \(K \) is not quadratically closed. So the lower bound \(\gamma(k, n, K) \geq k(n - k) + 1 \) proved here for algebraically closed fields will not hold in general. On the other hand, we suspect that the upper bound \(\gamma(k, n, K) \leq k(n - k) + 1 \) does hold for arbitrary fields. In fact we have verified this for finite fields of sufficiently large order using counting arguments \([2]\). However, as the referee pointed out it is slightly worrying that the conjecture fails in the "thin" case, that is, if we replace \(n \)-space by \(n \)-set, \(k \)-subspace by \(k \)-subset and vector space complement by set complement. However, the upper bound of \(\binom{n}{k} \) given in \([1]\) holds in both cases.

References

