Some Schrödinger operators

with dense point spectrum

Author:
Barry Simon

Journal:
Proc. Amer. Math. Soc. **125** (1997), 203-208

MSC (1991):
Primary 34L99, 81Q05

DOI:
https://doi.org/10.1090/S0002-9939-97-03559-4

MathSciNet review:
1346989

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given any sequence of positive energies and any monotone function on with , , we can find a potential on such that are eigenvalues of and .

**[1]**F. Atkinson,*The asymptotic solutions of second order differential equations*, Ann. Math. Pura Appl.**37**(1954), 347-378. MR**16:701f****[2]**J. Dollard and C. Friedman,*On strong product integration*, J. Funct. Anal.**28**(1978), 309-354. MR**58:11742a****[3]**-,*Product integrals and the Schrödinger equation*, J. Math. Phys.**18**(1977), 1598-1607. MR**56:7558****[4]**M.S.P. Eastham and H. Kalf,*Schrödinger-type Operators with Continuous Spectra*, Research Notes in Mathematics 65, Pitman Books Ltd., London, 1982. MR**84i:35107****[5]**W.A. Harris and D.A. Lutz,*Asymptotic integration of adiabatic oscillator*, J. Math. Anal. Appl.**51**(1975), 76-93. MR**51:6069****[6]**A. Kiselev,*Absolutely continuous spectrum of one-dimensional Schrödinger operators and Jacobi matrices with slowly decreasing potentials*, Comm. Math. Phys. (to appear).**[7]**S.N. Naboko,*Dense point spectra of Schrödinger and Dirac operators*, Theor.-math.**68**(1986), 18-28. MR**88h:81029****[8]**M. Reed and B. Simon,*Methods of Modern Mathematical Physics, III. Scattering Theory*, Academic Press, New York, 1979. MR**80m:81085****[9]**J. von Neumann and E.P. Wigner,*Über merkwürdige diskrete Eigenwerte*, Z. Phys.**30**(1929), 465-467.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
34L99,
81Q05

Retrieve articles in all journals with MSC (1991): 34L99, 81Q05

Additional Information

**Barry Simon**

Affiliation:
Division of Physics, Mathematics, and Astronomy, California Institute of Technology, 253-37, Pasadena, California 91125

Email:
bsimon@caltech.edu

DOI:
https://doi.org/10.1090/S0002-9939-97-03559-4

Received by editor(s):
July 26, 1995

Additional Notes:
This material is based upon work supported by the National Science Foundation under Grant No. DMS-9401491. The Government has certain rights in this material.

Communicated by:
Palle E. T. Jorgensen

Article copyright:
© Copyright 1997
Barry Simon