Primitive characters of subgroups of groups
Author:
Mark L. Lewis
Journal:
Proc. Amer. Math. Soc. 125 (1997), 2733
MSC (1991):
Primary 20C15
MathSciNet review:
1353389
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be an group, let be a subnormal subgroup of , and let be a Hall subgroup of . If the character is primitive, then is a power of 2. Furthermore, if is odd, then .
 1.
Dilip
Gajendragadkar, A characteristic class of characters of finite
𝜋separable groups, J. Algebra 59 (1979),
no. 2, 237–259. MR 543247
(82b:20012), http://dx.doi.org/10.1016/00218693(79)901248
 2.
I.
M. Isaacs, Characters of solvable and symplectic groups, Amer.
J. Math. 95 (1973), 594–635. MR 0332945
(48 #11270)
 3.
I.
Martin Isaacs, Character theory of finite groups, Academic
Press [Harcourt Brace Jovanovich, Publishers], New YorkLondon, 1976. Pure
and Applied Mathematics, No. 69. MR 0460423
(57 #417)
 4.
I.
Martin Isaacs, Primitive characters, normal subgroups, and
𝑀groups, Math. Z. 177 (1981), no. 2,
267–284. MR
612879 (82f:20026), http://dx.doi.org/10.1007/BF01214205
 5.
I.
M. Isaacs, Characters of subnormal subgroups of
𝑀groups, Arch. Math. (Basel) 42 (1984),
no. 6, 509–515. MR 756890
(86a:20009), http://dx.doi.org/10.1007/BF01194046
 6.
I.
M. Isaacs, Fong characters in 𝜋separable groups, J.
Algebra 99 (1986), no. 1, 89–107. MR 836635
(87e:20015), http://dx.doi.org/10.1016/00218693(86)900566
 7.
I.
M. Isaacs, Induction and restriction of 𝜋special
characters, Canad. J. Math. 38 (1986), no. 3,
576–604. MR
845666 (87g:20014), http://dx.doi.org/10.4153/CJM19860295
 8.
I.
M. Isaacs, Partial characters of 𝜋separable groups,
Representation theory of finite groups and finitedimensional algebras
(Bielefeld, 1991) Progr. Math., vol. 95, Birkhäuser, Basel,
1991, pp. 273–287. MR 1112164
(93c:20015)
 9.
I.
M. Isaacs, The 𝜋character theory of solvable groups,
J. Austral. Math. Soc. Ser. A 57 (1994), no. 1,
81–102. MR
1279288 (95c:20011)
 10.
I.
Martin Isaacs, Algebra, Brooks/Cole Publishing Co., Pacific
Grove, CA, 1994. A graduate course. MR 1276273
(95k:00003)
 11.
I. M. Isaacs and G. Navarro, Weights and Vertices for Characters of Separable Groups, J. Algebra 177 (1995), 339366. CMP 96:02
 12.
I. M. Isaacs, Characters and Sets of Primes for Solvable Groups, in Finite and Locally Finite Groups, NATO ASI Series, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995, pp. 347376. CMP 96:04
 13.
I. M. Isaacs, Induction and Restriction of Partial Characters and Their Lifts, Submitted to Can. J. Math.
 14.
M. L. Lewis, Nonabelian FullyRamified Sections, To Appear in Can. J. Math.
 15.
M. L. Lewis, Characters of Maximal Subgroups of Groups, To Appear in J. Algebra.
 16.
Gabriel
Navarro, Primitive characters of subgroups of
𝑀groups, Math. Z. 218 (1995), no. 3,
439–445. MR 1324538
(96b:20011), http://dx.doi.org/10.1007/BF02571914
 1.
 D. Gajendragadkar, A Characteristic Class of Characters of Finite Separable Groups, J. Algebra 59 (1979), 237259. MR 82b:20012
 2.
 I. M. Isaacs, Characters of Solvable and Symplectic Groups, Amer. J. Math. 95 (1973), 594635. MR 48:11270
 3.
 I. M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976. MR 57:417
 4.
 I. M. Isaacs, Primitive Characters, Normal Subgroups, and Groups, Math. Z. 177 (1981), 267284. MR 82f:20026
 5.
 I. M. Isaacs, Characters of Subnormal Subgroups of Groups, Arch. Math. 42 (1984), 509515. MR 86a:20009
 6.
 I. M. Isaacs, Fong Characters in Separable Groups, J. Algebra 99 (1986), 89107. MR 87e:20015
 7.
 I. M. Isaacs, Induction and Restriction of Special Characters, Can. J. Math. 38 (1986), 576604. MR 87g:20014
 8.
 I. M. Isaacs, Partial Characters of Separable Groups, Prog. Math. 95 (1991), 273287. MR 93c:20015
 9.
 I. M. Isaacs, The Character Theory of Solvable Groups, J. Austral. Math. Soc. (Series A) 57 (1994), 81102. MR 95c:20011
 10.
 I. M. Isaacs, Algebra: A Graduate Course, Brook/Coles Publishing Company, Pacific Grove, CA, 1994. MR 95k:00003
 11.
 I. M. Isaacs and G. Navarro, Weights and Vertices for Characters of Separable Groups, J. Algebra 177 (1995), 339366. CMP 96:02
 12.
 I. M. Isaacs, Characters and Sets of Primes for Solvable Groups, in Finite and Locally Finite Groups, NATO ASI Series, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995, pp. 347376. CMP 96:04
 13.
 I. M. Isaacs, Induction and Restriction of Partial Characters and Their Lifts, Submitted to Can. J. Math.
 14.
 M. L. Lewis, Nonabelian FullyRamified Sections, To Appear in Can. J. Math.
 15.
 M. L. Lewis, Characters of Maximal Subgroups of Groups, To Appear in J. Algebra.
 16.
 G. Navarro, Primitive Characters of Subgroups of Groups, Math. Z. 218 (1995), 439445. MR 96b:20011
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
20C15
Retrieve articles in all journals
with MSC (1991):
20C15
Additional Information
Mark L. Lewis
Affiliation:
Department of Mathematics, 400 Carver Hall, Iowa State University, Ames, Iowa 50011
Email:
mllewis@iastate.edu
DOI:
http://dx.doi.org/10.1090/S0002993997036253
PII:
S 00029939(97)036253
Received by editor(s):
June 26, 1995
Communicated by:
Ronald M. Solomon
Article copyright:
© Copyright 1997
American Mathematical Society
