CENTRAL UNITS OF THE INTEGRAL GROUP RING $\mathbb{Z}A_5$

YUANLIN LI AND M. M. PARMENTER

(Communicated by Ronald M. Solomon)

Abstract. There are very few cases known of nonabelian groups G where the group of central units of $\mathbb{Z}G$, denoted $\mathbb{Z}(U(\mathbb{Z}G))$, is nontrivial and where the structure of $\mathbb{Z}(U(\mathbb{Z}G))$, including a complete set of generators, has been determined. In this note, we show that the central units of augmentation 1 in the integral group ring $\mathbb{Z}A_5$ form an infinite cyclic group $\langle u \rangle$, and we explicitly find the generator u.

1. Introduction

Let $\mathbb{Z}G$ denote the integral group ring of a group G, $U(\mathbb{Z}G)$ the group of units of such a group ring and $V(\mathbb{Z}G)$ the subgroup of units of augmentation 1. We will use the term trivial units to describe the subgroup $\pm G$ of $U(\mathbb{Z}G)$. For any group it is possible to define the important families of bicyclic and Bass cyclic units in $V(\mathbb{Z}G)$ (see [6] for the definitions). It turns out that for many finite groups, these families, taken together, generate a subgroup of finite index in $V(\mathbb{Z}G)$ ([4], [6]). The problem of finding the full structure of $V(\mathbb{Z}G)$, including a complete set of generators, seems to be more difficult and has been settled for only a small number of special cases (see [6] for an excellent survey).

Even less is known about $\mathbb{Z}(U(\mathbb{Z}G))$, the group of central units of $\mathbb{Z}G$. When G is finite, Ritter and Sehgal ([3], [6]) proved the following theorem giving necessary and sufficient conditions for $\mathbb{Z}(U(\mathbb{Z}G))$ to be trivial.

Theorem 1. Let G be a finite group. All central units of $\mathbb{Z}G$ are trivial if and only if for every $x \in G$ and every natural number j relatively prime to $|G|$, x^j is conjugate to x or x^{-1}.

Also, when G is finite Ritter and Sehgal [5] constructed a finite set of generators for a subgroup of finite index in $\mathbb{Z}(U(\mathbb{Z}G))$, while Jespers, Parmenter and Sehgal [1] found a different set of generators which works for finitely generated nilpotent groups (and some others as well). In the latter case, the generators were constructed from Bass cyclic units in $\mathbb{Z}G$ and the construction depended on the existence of a very well behaved finite normal series in G. In general, however, there is no simple procedure known for constructing examples of central units in $\mathbb{Z}G$ (even when Theorem 1 guarantees their existence). Also there are very few cases of nonabelian groups where $\mathbb{Z}(U(\mathbb{Z}G))$ is nontrivial and where a complete set of generators has been obtained for $\mathbb{Z}(U(\mathbb{Z}G))$.
In this paper we make some progress on these questions. Since A_5, the alternating group on 5 letters, is a simple group, the procedure in [1] cannot be used to construct central units in ZA_5. However, if $\alpha = (12345)$ then α and α^{-1} are conjugate to each other but not to $\alpha^2 = \alpha^5$, so Theorem 1 says that $Z(U(ZA_5))$ is nontrivial. We will show that $Z(U(ZA_5)) = \pm\langle u \rangle$ where $\langle u \rangle$ is an infinite cyclic group. More significantly, we will explicitly find the generator u, thus obtaining a complete description of $Z(U(ZA_5))$.

The work described here will form part of the first author’s doctoral dissertation.

2. Main results

Recall that whenever R is a commutative ring with 1, the centre of RG is a free R–module with basis consisting of the finite conjugacy class sums in RG. A_5 has 5 distinct conjugacy classes, and we will denote the corresponding class sums by C_0, C_1, C_2, C_3, C_4 where $C_0 = 1, C_1$ is the sum of elements conjugate to (12345), C_2 is the sum of elements conjugate to (13524), C_3 is the sum of all 3–cycles and C_4 is the sum of all elements which are the product of 2 disjoint transpositions. We will need to use the following identities:

\[
\begin{align*}
C_1^2 &= 12 + 5C_1 + C_2 + 3C_3, \\
C_1 C_2 &= C_1 + C_2 + 3C_3 + 4C_4, \\
C_1 C_3 &= 5C_1 + 5C_2 + 3C_3 + 4C_4, \\
C_1 C_4 &= 5C_2 + 3C_3 + 4C_4, \\
C_2^2 &= 12 + C_1 + 5C_2 + 3C_3, \\
C_2 C_3 &= 5C_1 + 5C_2 + 3C_3 + 4C_4, \\
C_2 C_4 &= 5C_1 + 3C_3 + 4C_4, \\
C_3^2 &= 20 + 5C_1 + 5C_2 + 7C_3 + 8C_4, \\
C_3 C_4 &= 5C_1 + 5C_2 + 6C_3 + 4C_4, \\
C_4^2 &= 15 + 5C_1 + 5C_2 + 3C_3 + 2C_4.
\end{align*}
\]

Suppose $u \in Z(V(ZA_5))$. Let $u = \sum a_i C_i$ and $u^{-1} = \sum b_i C_i$ where $a_i, b_i \in \mathbb{Z}$, $0 \leq i \leq 4$. Since $uu^{-1} = 1$, the identities just stated can be used to give 5 equations, one for each C_i (some of the details will be omitted here as they are routine). The augmentation map tells us that $a_0 + 12a_1 + 12a_2 + 20a_3 + 15a_4 = 1$ and similarly for the b_i. Substituting for a_0 and b_0, we see that the equation arising from C_0 can be ignored as it is a linear combination of the rest. The other 4 equations are:

\[
\begin{align*}
(1 - 19a_1 - 11a_2 - 15a_3 - 15a_4)b_1 + (-11a_1 + a_2 + 5a_3 + 5a_4)b_2 \\
+ (-15a_1 + 5a_2 + 5a_3 + 5a_4)b_3 + (-15a_1 + 5a_2 + 5a_3 + 5a_4)b_4 &= -a_1, \\
(3a_1 + 3a_2 - 9a_3 + 3a_4)b_1 + (3a_1 + 3a_2 - 9a_3 + 3a_4)b_2 \\
+ (3a_1 + 3a_2 - 9a_3 + 3a_4)b_3 + (3a_1 + 3a_2 - 9a_3 + 3a_4)b_4 &= -a_2, \\
(4a_2 + 4a_3 - 8a_4)b_1 + (4a_1 + 4a_2 - 8a_4)b_2 + (4a_1 + 4a_2 - 8a_3 - 16a_4)b_3 \\
+ (1 - 8a_1 - 8a_2 - 16a_3 - 28a_4)b_4 &= -a_4.
\end{align*}
\]
Adding these together, we obtain

\[(1 - 15(a_1 + a_2 + a_3 + a_4))(b_1 + b_2 + b_3 + b_4) = -(a_1 + a_2 + a_3 + a_4).
\]

Since we are dealing with integers, this means that \(a_1 + a_2 + a_3 + a_4 = 0\) and \(b_1 + b_2 + b_3 + b_4 = 0\). Substituting for \(a_1\) and \(b_1\), and ignoring the first equation which is then a linear combination of the others, we are reduced to

\[(1 + 4a_2 - 8a_3 - 8a_4)b_2 + (-8a_2 - 4a_3 - 4a_4)b_3 + (-8a_2 - 4a_3 - 4a_4)b_4 + a_2 = 0,
\]

\[(1 - 12a_3)b_3 + a_3 = 0,
\]

\[\begin{align*}
(−8a_2−4a_3−4a_4)&b_2−(−4a_2−12a_4)b_3 + (1−4a_2−12a_3−12a_4)b_4 + a_4 = 0.
\end{align*}
\]

It follows from the second equation that \(1 - 12a_3\) divides \(a_3\), forcing \(a_3 = 0\) and \(b_3 = 0\). We are now reduced to

\[(1 + 4a_2 - 8a_4)b_2 + (-8a_2 - 4a_4)b_4 = -a_2,
\]

\[(-8a_2 - 4a_4)b_2 + (1 - 4a_2 - 12a_4)b_4 = -a_4.
\]

The determinant of the \(2 \times 2\) matrix arising here is

\[D = 1 - 20(4a_2^2 + 4a_2a_4 - 4a_4^2 + a_4) = -20(2a_2 + a_4)^2 + (10a_4 - 1)^2.
\]

We note that \(D \neq 0\) and also

\[b_2 = \frac{(2a_2 + a_4)^2 - (5a_4^2 + a_2)}{D},
\]

\[b_4 = \frac{10a_4^2 - 4a_4 - 2(2a_2 + a_4)^2}{D}.
\]

Since \(2b_2 + b_4 = -\frac{2a_2 - a_4}{D}\) is an integer, we have that \(D|(2a_2 + a_4)\). The equation for \(b_4\) then says that \(D|a_2(10a_4 - 1)\). We conclude from the equation for \(D\) that \(gcd(D, a_2) = 1\), so \(D|(10a_4 - 1)\). Setting \(2a_2 + a_4 = Du\) and \(10a_4 - 1 = Dv\), we obtain \(D = D^2(v^2 - 20u^2)\). Since \(D \neq 0\) and \(D \neq -1\), it follows that \(D = 1\).

We then have that \((10a_4 - 1)^2 - 20(2a_2 + a_4)^2 = 1\), and this can be rewritten as \((2a_2 + a_4)^2 = (5a_4 - 1)a_4\). It follows that \(a_4\) is an even number and that both \(a_4\) and \(5a_4 - 1\) are \(\pm\) (perfect squares). Let \(a_4 = \pm4Y^2\) and \(5a_4 - 1 = \pm X^2\). If \(a_4 > 0\), we get \(X^2 - 20Y^2 = -1\). Since the left hand side is \(0\) or \(1\) (mod \(4\)), this equation has no solution.

If \(a_4 \leq 0\), we have the Pell’s equation \(X^2 - 20Y^2 = 1\). Working back through the identities which have been developed, we have proved

Proposition 2. \(Z(U(ZA_4)) = \{±ux = (1 + 12XY^2)C_0 + (±XY + 2Y^2)C_1 + (±XY + 2Y^2)C_2 - 4Y^2C_4\text{ where }X, Y\text{ range through all solutions of the Pell’s equation }X^2 - 20Y^2 = 1}\).

Note that if \(X, Y\) is any solution of the above Pell’s equation, then the solution \(-X, Y\) gives the same units, so we may assume \(X\) and \(Y\) are nonnegative. Also, if \(X, Y\) is a particular solution of the equation, then the 2 units obtained from this
solution are inverse to each other – i.e., if
\[u = (1 + 12Y^2)C_0 + (XY + 2Y^2)C_1 + (\sqrt{-XY + 2Y^2})C_2 - 4Y^2C_4, \]
then \(u^{-1} = (1 + 12Y^2)C_0 + (\sqrt{-XY + 2Y^2})C_2 + (XY + 2Y^2)C_1 - 4Y^2C_4. \)

For example, the solution \(X = 9, Y = 2 \) gives the inverse pair \(v = 49 + 26C_1 - 10C_2 - 16C_4 \), \(v^{-1} = 49 - 10C_1 + 26C_2 - 16C_4 \). In fact, our main theorem shows that this particular \(v \) is more than just an isolated example.

Theorem 3. \(Z(U(ZA_5)) = \pm(v) \) where \(v \) is as defined above.

A careful discussion of solutions to Pell’s equation can be found in [2], but for our purposes the crucial result is

Lemma 4 ([2], Theorem 7.26). Consider the Pell’s equation \(x^2 - dy^2 = 1 \) where \(d \) is a positive integer which is not a perfect square. Let \(X_1, Y_1 \) be the least positive solution to the equation. Then all positive solutions are given by \(X_n, Y_n \) for \(n = 1, 2, 3, \ldots \), where \(X_n \) and \(Y_n \) are the integers defined by \(X_n + Y_n\sqrt{d} = (X_1 + Y_1\sqrt{d})^n \).

Proof of Theorem 3. By Proposition 2 and the subsequent remark, we are considering nonnegative solutions to the equation \(X^2 - 20Y^2 = 1 \). When \(Y = 0 \) we get \(u = 1 \), while there is no solution when \(X = 0 \), so we may assume \(X, Y > 0 \).

All positive solutions are given by \(X_n, Y_n \) as stated in Lemma 4. For each such \(n \), define
\[u_n = 1 + 12Y_n^2 + (X_nY_n + 2Y_n^2)C_1 + (-X_nY_n + 2Y_n^2)C_2 - 4Y_n^2C_4. \]

It is easy to see that \(X = 9, Y = 2 \) is the least positive solution of \(X^2 - 20Y^2 = 1 \), so \(u_1 = v \).

Using our earlier remarks on inverses, we will be finished if we can show that \(u_n = u_1^n \) for all \(n \geq 1 \). This we will do by induction, the case \(n = 1 \) being obvious. Assume the result is true when \(n = k \) for some \(k \geq 1 \). Since \(u_1^{k+1} \) is a central unit, Proposition 2 tells us that we only need prove that the identity coefficient of \(u_1^{k+1} \) equals \(1 + 12Y_{k+1}^2 \) and that the coefficient of \(C_1 \) in \(u_1^{k+1} \) equals \(X_{k+1}Y_{k+1} + 2Y_{k+1}^2 \).

The identity coefficient of \(u_1^{k+1} = u_1u_k \) is
\[49(1 + 12Y_k^2) + 12(26)(X_kY_k + 2Y_k^2) + 12(-10)(-X_kY_k + 2Y_k^2) + 15(-16)(-4Y_k^2) = 49 + 432X_kY_k + 1932Y_k^2. \]

On the other hand, Lemma 4 says that \(1 + 12Y_{k+1}^2 = 1 + 12(9Y_k + 2X_k)^2 = 1 + 12(81Y_k^2 + 36X_kY_k + 4(20Y_k^2 + 1)) = 49 + 432X_kY_k + 1932Y_k^2 \), as desired.

The coefficient of \(C_1 \) in \(u_1^{k+1} \) equals
\[49(X_kY_k + 2Y_k^2) + 26(1 + 12Y_k^2) + 5(26)(X_kY_k + 2Y_k^2) + 26(-X_kY_k + 2Y_k^2) \]
\[+ (-10)(X_kY_k + 2Y_k^2) + (-10)(-X_kY_k + 2Y_k^2) + 5(-10)(-4Y_k^2) \]
\[+ 5(-16)(-X_kY_k + 2Y_k^2) + 5(-16)(-4Y_k^2) \]
\[= 26 + 233X_kY_k + 1042Y_k^2. \]

Lemma 4 says that \(X_{k+1}Y_{k+1} + 2Y_{k+1}^2 = (9X_k + 40Y_k)(2X_k + 9Y_k) + 2(2X_k + 9Y_k)^2 = 26(20Y_k^2 + 1) + 233X_kY_k + 522Y_k^2 = 26 + 233X_kY_k + 1042Y_k^2 \), and this completes the proof.

\[\square \]
REFERENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS, MEMORIAL UNIVERSITY OF NEWFOUNDLAND,
ST. JOHN’S, NEWFOUNDLAND, CANADA A1C 5S7
E-mail address: yuanlin@fermat.math.mun.ca
E-mail address: mparmen@plato.ucs.mun.ca