Harmonic tori in quaternionic projective 3-spaces

Author:
Seiichi Udagawa

Journal:
Proc. Amer. Math. Soc. **125** (1997), 275-285

MSC (1991):
Primary 58E20, 53C42

DOI:
https://doi.org/10.1090/S0002-9939-97-03638-1

MathSciNet review:
1353402

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Burstall classified conformal non-superminimal harmonic two-tori in spheres and complex projective spaces. In this paper, we shall classify conformal non-superminimal harmonic two-tori in a 2- or 3-dimensional quaternionic projective space, which are not always covered by primitive harmonic two-tori of finite type.

**[Ba-W]**A. Bahy-El-Dien and J. C. Wood,*The explicit construction of all harmonic two-spheres in quaternionic projective spaces*, Proc. London Math. Soc.**62**(1991), 202-224. MR**91k:58021****[B]**F. E. Burstall,*Harmonic tori in spheres and complex projective spaces*, preprint.**[B-F-P-P]**F. E. Burstall, D. Ferus, F. Pedit, and U. Pinkall,*Harmonic tori in symmetric spaces and commuting Hamiltonian systems on loop algebras*, Ann. of Math.**138**(1993), 173-212. MR**94m:58057****[B-P-W]**J. Bolton, F. Pedit, and L. Woodward,*Minimal surfaces and the affine Toda field model*, J. Reine Angew. Math. (to appear).**[B-P]**F. E. Burstall and F. Pedit,*Harmonic maps via Adler-Kostant-Symes theory*, Harmonic maps and Integrable Systems (A.P. Fordy and J.C. Wood, eds.), Aspects of Mathematics E23, Vieweg, 1994, pp. 221-272. CMP 94:09**[B-R]**F. E. Burstall and J. H. Rawnsley,*Twistor theory for Riemannian symmetric spaces*, Lect. Notes in Math.**1424**, Springer-Verlag, Berlin-Heidelberg-NewYork-Tokyo, 1990. MR**91m:58039****[B-W]**F. E. Burstall and J. C. Wood,*The construction of harmonic maps into complex Grassmannians*, J. Differential Geom.**23**(1986)), 255-297. MR**88i:58038****[F-P-P-S]**D. Ferus, F. Pedit, U. Pinkall, and I. Sterling,*Minimal tori in*, J. Reine. Angew. Math.**429**(1992), 1-47. MR**93h:53008****[G]**J. F. Glazebrook,*The construction of a class of harmonic maps to quaternionic projective spaces*, J. London Math. Soc.**30**(1984), 151-159. MR**86h:58041****[H]**N. J. Hitchin,*Harmonic maps from a 2-torus to the 3-sphere*, J. Differential Geom.**31**(1990), 627-710. MR**91d:58050****[K]**O. Kowalski,*Generalized symmetric spaces*, Lect. Notes in Math.**805**, Springer-Verlag, Berlin-Heidelberg-NewYork, 1980. MR**83d:53036****[U]**S. Udagawa,*Harmonic maps from a two-torus into a complex Grassmann manifold*, International J. Math.**6**(1995), 447-459. CMP 95:11**[Wo]**J. G. Wolfson,*Harmonic sequences and harmonic maps of surfaces into complex Grassmann manifolds*, J. Differential Geom.**27**(1988), 161-178. MR**89c:58031****[W]**J. C. Wood,*The explicit construction and parametrization of all harmonic maps from the two-sphere to a complex Grassmannians*, J. Reine Angew. Math.**386**(1988), 1-31. MR**89f:58045**; MR**90b:58054**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
58E20,
53C42

Retrieve articles in all journals with MSC (1991): 58E20, 53C42

Additional Information

**Seiichi Udagawa**

Affiliation:
Department of Mathematics, School of Medicine, Nihon University, Itabashi, Tokyo 173, Japan

Email:
h01217@sinet.ad.jp

DOI:
https://doi.org/10.1090/S0002-9939-97-03638-1

Received by editor(s):
June 26, 1995

Communicated by:
Peter Li

Article copyright:
© Copyright 1997
American Mathematical Society