Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Harmonic tori in quaternionic projective 3-spaces


Author: Seiichi Udagawa
Journal: Proc. Amer. Math. Soc. 125 (1997), 275-285
MSC (1991): Primary 58E20, 53C42
DOI: https://doi.org/10.1090/S0002-9939-97-03638-1
MathSciNet review: 1353402
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Burstall classified conformal non-superminimal harmonic two-tori in spheres and complex projective spaces. In this paper, we shall classify conformal non-superminimal harmonic two-tori in a 2- or 3-dimensional quaternionic projective space, which are not always covered by primitive harmonic two-tori of finite type.


References [Enhancements On Off] (What's this?)

  • [Ba-W] A. Bahy-El-Dien and J. C. Wood, The explicit construction of all harmonic two-spheres in quaternionic projective spaces, Proc. London Math. Soc. 62 (1991), 202-224. MR 91k:58021
  • [B] F. E. Burstall, Harmonic tori in spheres and complex projective spaces, preprint.
  • [B-F-P-P] F. E. Burstall, D. Ferus, F. Pedit, and U. Pinkall, Harmonic tori in symmetric spaces and commuting Hamiltonian systems on loop algebras, Ann. of Math. 138 (1993), 173-212. MR 94m:58057
  • [B-P-W] J. Bolton, F. Pedit, and L. Woodward, Minimal surfaces and the affine Toda field model, J. Reine Angew. Math. (to appear).
  • [B-P] F. E. Burstall and F. Pedit, Harmonic maps via Adler-Kostant-Symes theory, Harmonic maps and Integrable Systems (A.P. Fordy and J.C. Wood, eds.), Aspects of Mathematics E23, Vieweg, 1994, pp. 221-272. CMP 94:09
  • [B-R] F. E. Burstall and J. H. Rawnsley, Twistor theory for Riemannian symmetric spaces, Lect. Notes in Math. 1424, Springer-Verlag, Berlin-Heidelberg-NewYork-Tokyo, 1990. MR 91m:58039
  • [B-W] F. E. Burstall and J. C. Wood, The construction of harmonic maps into complex Grassmannians, J. Differential Geom. 23 (1986)), 255-297. MR 88i:58038
  • [F-P-P-S] D. Ferus, F. Pedit, U. Pinkall, and I. Sterling, Minimal tori in $S^{4}$, J. Reine. Angew. Math. 429 (1992), 1-47. MR 93h:53008
  • [G] J. F. Glazebrook, The construction of a class of harmonic maps to quaternionic projective spaces, J. London Math. Soc. 30 (1984), 151-159. MR 86h:58041
  • [H] N. J. Hitchin, Harmonic maps from a 2-torus to the 3-sphere, J. Differential Geom. 31 (1990), 627-710. MR 91d:58050
  • [K] O. Kowalski, Generalized symmetric spaces, Lect. Notes in Math. 805, Springer-Verlag, Berlin-Heidelberg-NewYork, 1980. MR 83d:53036
  • [U] S. Udagawa, Harmonic maps from a two-torus into a complex Grassmann manifold, International J. Math. 6 (1995), 447-459. CMP 95:11
  • [Wo] J. G. Wolfson, Harmonic sequences and harmonic maps of surfaces into complex Grassmann manifolds, J. Differential Geom. 27 (1988), 161-178. MR 89c:58031
  • [W] J. C. Wood, The explicit construction and parametrization of all harmonic maps from the two-sphere to a complex Grassmannians, J. Reine Angew. Math. 386 (1988), 1-31. MR 89f:58045; MR 90b:58054

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 58E20, 53C42

Retrieve articles in all journals with MSC (1991): 58E20, 53C42


Additional Information

Seiichi Udagawa
Affiliation: Department of Mathematics, School of Medicine, Nihon University, Itabashi, Tokyo 173, Japan
Email: h01217@sinet.ad.jp

DOI: https://doi.org/10.1090/S0002-9939-97-03638-1
Received by editor(s): June 26, 1995
Communicated by: Peter Li
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society