Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Smooth structures on complex surfaces
with fundamental group Z$_{2}$


Author: Shuguang Wang
Journal: Proc. Amer. Math. Soc. 125 (1997), 287-292
MSC (1991): Primary 57R55, 57R57, 57N13
DOI: https://doi.org/10.1090/S0002-9939-97-03641-1
MathSciNet review: 1353405
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the quotients of a complex surface under free holomorphic and anti-holomorphic involutions are homeomorphic but not diffeomorphic. This gives a way to construct exotic smooth structures on some complex surfaces.


References [Enhancements On Off] (What's this?)

  • 1. W. Barth, C. Peters and A. Van de Ven, Compact complex surfaces, Springer-Verlag, 1984. MR 86c:32026
  • 2. S. Cappell and J. Shaneson, Some new four-manifolds, Ann. Math. 104 (1976), 61-72. MR 54:6167
  • 3. S. Donaldson, Irrationality and the h-cobordism conjecture, J. Diff. Geom. 26 (1987), 141-168. MR 88j:57035
  • 4. -, Polynomial invariants for smooth four-manifolds, Topology 29 (1990), 257-315. MR 92a:57035
  • 5. -, Yang-Mills invariants of four-manifolds, Geometry of low-dimensional manifolds, Vol. 1, pp. 5-41. S. Donaldson and C. Thomas eds., Cambridge University Press, 1990. MR 93f:57040
  • 6. S. Finashin, M. Kreck and O. Viro, Non-diffeomorphic but homeomorphic knottings in the 4-sphere, Rohklin Seminar, O. Viro, ed., Lecture Notes in Math., Vol. 1346, Springer-Verlag, 1988. MR 90h:57021
  • 7. R. Fintushel and R. Stern, An exotic free involution on $S^{4}$, Ann. Math. 113 (1981), 357-365. MR 84g:57036
  • 8. -, Rational blowdowns of smooth 4-manifolds, Preprint.
  • 9. R. Friedman and J. Morgan, On the diffeomorphism type of certain algebraic surfaces I, J. Diff. Geom. 27 (1988), 297-369. MR 89d:57046
  • 10. I. Hambleton and M. Kreck, Smooth structures on algebraic surfaces with cyclic fundamental group, Invt. Math. 91 (1988), 53-59. MR 89a:57043
  • 11. -, Smooth structures on algebraic surfaces with finite fundamental group, Invt. Math. 102 (1990), 109-114. MR 91g:57032
  • 12. -, Cancellation, elliptic surfaces and the topology of certain four -manifolds, J. Reine Angew. Math. 444 (1993), 79-100. MR 95h:57036
  • 13. N. Habegger, Une variete de dimension 4 arec forme d$'$intersection paire, Comp. Math. 63 (1987), 217-222.
  • 14. N. Hitchin, Harmonic spinors, Adv. Math. 14 (1974), 1-55. MR 50:11332
  • 15. D. Kotschick, On irreducible four-manifolds, to appear.
  • 16. M. Lübke and C. Okonek, Differentiable structures on elliptic surfaces with cyclic fundamental group, Comp. Math. 63 (1987), 217-222. MR 89d:57048
  • 17. F. Maier, On the diffeomorphism type of elliptic surfaces with cyclic fundamental group, Tulane University Thesis (1987).
  • 18. S. Matsuoka, Non-singular algebraic curves in $\hbox {\bf RP}^{1}\times \hbox {\bf RP}^{1}$, Trans. Amer. Math. Soc. 324 (1991), 87-107. MR 91b:14054
  • 19. C. Okonek, Fake Enriques surfaces, Topology 27 (1988), 415-427. MR 90e:57062
  • 20. C. Okenek and A. Van de Ven, Stable vector bundles and differential structures on certain elliptic surfaces, Invt. Math. 86 (1988), 357-370.
  • 21. S. Wang, A vanishing theorem for Seiberg-Witten invariants, Math. Res. Letters 2 (1995), 305-311. MR 96c:57056
  • 22. E. Witten, Monopoles and four-manifolds, Math. Res. Letters 1 (1994), 769-796. MR 96d:57035

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 57R55, 57R57, 57N13

Retrieve articles in all journals with MSC (1991): 57R55, 57R57, 57N13


Additional Information

Shuguang Wang
Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
Email: sw@wang.cs.missouri.edu

DOI: https://doi.org/10.1090/S0002-9939-97-03641-1
Received by editor(s): July 1, 1995
Additional Notes: Work supported by the Research Board grant of the University of Missouri
Communicated by: Ronald Stern
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society