NORMAL OPERATORS IN C^*-ALGEBRAS
WITHOUT NICE APPROXIMANTS

DON HADWIN AND TERRY A. LORING

(Communicated by Palle E. T. Jorgensen)

Abstract. The second author constructed a separable direct limit C^*-algebra
with real rank zero containing a normal element whose spectrum is the closed
unit disk that is not the limit of normal elements in the limiting algebras,
and is not a limit of normals in the algebra having finite spectrum. We use
Fredholm index theory to modify and simplify this construction to obtain such
examples that are not limits of any “nice” types of elements.

In [5] the second author constructed an increasing sequence $\{A_n\}$ of C^*-subal-
gebras of $B(l^2(\mathbb{Z}))$ with direct limit A (i.e., $A = \bigcup A_n$), and he constructed a
normal element N in A that is not a limit of normals in the A_n’s. (See also a
related construction [6].) We modify the construction, putting it in the context of
BDF [1], leading to a richer class of examples. By replacing the general K-theory
arguments in [5] with Fredholm index theory arguments we show that N cannot be
approximated in the union of the A_n’s by operators from any other nice classes of
operators, such as hyponormals.

Lemma 1. If S is a norm separable subset of a C^*-algebra A, and A has real rank
zero, then there is a separable C^*-subalgebra B of A such that $S \subset B$ and B has
real rank zero.

Proof. Let A_1 be the C^*-algebra generated by S, and, given A_n for $n \geq 1$, define
A_{n+1} to be a C^*-algebra generated by A_n and a countable set of finite-spectrum
Hermitian elements of A whose closure contains the set of Hermitian elements in
A_n. Let B be the closure of the union of the A_n’s.

It is easy to find a unitary element in a separable real rank zero C^*-algebra that
cannot be approximated by normal elements with finite spectrum, e.g., the image
u of the unilateral shift operator in the Calkin algebra is, by the above lemma,
contained in a separable real rank zero algebra A, and the nonzero Fredholm index
of u implies that u is not a limit of any (possibly non-normal) elements with finite
spectrum. To construct such an example with a normal element whose spectrum
is the unit disk, choose a real rank zero algebra B containing a normal element $b
whose spectrum is the closed unit disk and consider the element $u \oplus b$ in the algebra
$A \oplus B$.

We now turn to normal elements in direct limits. Suppose $A_i \subset B(H_i)$, $i = 1, 2,$
and define $A_1 \# A_2 = A_1 \oplus A_2 + K(H_1 \oplus H_2)$. It is easy to see that if A_1 and A_2
both have real rank zero, then so does $A_1 \# A_2$. If $T \in B(H_1 \oplus H_2)$, we denote the 2×2 operator matrix for T by (T_{ij}). Let $\sigma_e(T)$ denote the essential spectrum of an operator T.

Lemma 2. If A_1 is finite-dimensional, $T \in A_1 \# A_2$, T_{22} is Fredholm and $\varepsilon > 0$, then there is a t, $0 < t < \varepsilon$, such that $T - t$ is Fredholm and $\text{ind}(T - t) = \text{ind} T_{22}$.

Proof. Since $\sigma_e(T_{11})$ is finite, we can choose t in $(0, \varepsilon)$ such that $T_{11} - t$ is Fredholm with index 0 and $T_{22} - t$ is still Fredholm with the same index as that of T_{22}. Since T is a compact perturbation of $T_{11} \oplus T_{22}$, it follows that $T - t$ is Fredholm and $\text{ind}(T - t) = \text{ind} T_{22}$. \hfill \Box

Theorem 3. Suppose H is a separable infinite-dimensional Hilbert space, $N, S \in B(H)$, N is normal, S is essentially normal, and $\sigma(S) \subset \sigma_e(N)$. Then there are subspaces H_1, H_2 of H, a separable commutative AF C^*-subalgebra A_1 of $B(H_1)$, and a separable real rank zero C^*-subalgebra A_2 of $B(H_2)$ such that

1. $H = H_1 \oplus H_2$,
2. $N \in A_1 \# A_2$,
3. N_{22} is unitarily equivalent to a compact perturbation of S.

Proof. It follows from [1] that N is unitarily equivalent to a compact perturbation of $N \oplus S$. Thus we can write $H = H_1 \oplus H_2$, with respect to which N has an operator matrix such that $N_{11} = N_1 + K_1$, with N_1 unitarily equivalent to N and K_1 compact, N_{22} unitarily equivalent to a compact perturbation of S, and both N_{21} and N_{12} compact. Choose a separable commutative AF C^*-subalgebra A_1 of $B(H_1)$ containing N_1 and a separable real rank zero C^*-subalgebra A_2 of $B(H_2)$ containing N_{22}. \hfill \Box

To apply the preceding proposition to obtain examples like those of [5], we choose an increasing sequence $\{F_n\}$ of finite-dimensional C^*-subalgebras of the algebra A_1 whose union is dense in A_1. It is clear that $A_1 \# A_2$ is the direct limit of $\{F_n \# A_2\}$. Since A_1 and A_1 have real rank zero, so does $A_1 \# A_2$.

Example 4. Let N be a normal operator whose spectrum is the closed unit disk, and let S be the unilateral shift with multiplicity 1. The distance from S to the set of operators with 0 Fredholm index is 1. Suppose $T \in F_n \# A_2$ and $\| T - N \| < 1$. Then there is a arbitrarily small $r > 0$ such that $\| (T - r) - N \| < 1$, $T - r$ is Fredholm, and $\text{ind}(T - r) = \text{ind} N_{22} = \text{ind} S = -1$. The set of Fredholm operators with index -1 is open; hence $\sigma(T)$ has nonempty interior. Thus the distance from N to the set of elements in the union of the $F_n \# A_2$’s that are either normal, invertible or have nowhere dense spectrum is 1. The set of invertible elements in $A_1 \# A_2$ is open; thus the distance from N to the set of invertible elements in $A_1 \# A_2$ is 1. Note that the last two sentences remain true when A_2 is replaced with the much larger algebra $B(H_2)$.

Example 5. Let A be the unilateral shift, let $S = (A^* - 2) \oplus (A + 2)$, and let N be a normal operator whose spectrum is the closed disk centered at the origin with radius 3. We then have $\text{ind}(N_{22} \pm 2) = \text{ind}(S \pm 2) = \pm 1$. Furthermore, in the Calkin algebra, the inverses of $N_{22} \pm 2$ have norm 1. Hence, if W is any operator and $\| W - N_{22} \| < 1$, then $\text{ind}(W \pm 2) = \text{ind}(N_{22} \pm 2)$. Thus if T is in some $F_n \# A_2$, and $\| T - N \| < 1$, then, for some arbitrarily small $r > 0$, $\text{ind}(T - r \pm 2) = \text{ind}(N_{22} \pm 2) = \pm 1$. This rules out approximation of N by a vast array of elements.
in $\bigcup_n F_n \# A_2$. For example an operator T is hyponormal [2] if $T^* T - TT^* \geq 0$. Equivalently, T is hyponormal if and only if $\|T^* f\| \leq \|T f\|$ for every vector f. In particular, if T is hyponormal, then $\ker T^* \subset \ker T$, which means $\text{ind} T \leq 0$ if T is Fredholm. Thus N cannot be approximated by elements T in $\bigcup_n F_n \# A_2$ such that either T or T^* is hyponormal. Note that the hyponormal elements include the quasinormal ones (T commutes with $T^* T$) and the subnormals [2] ($n \times n$ matrix $(T^* T)_{ij} \geq 0$ for $1 \leq n < \infty$). An operator T is n-normal if every irreducible representation of $C^*(T)$ has dimension at most n. An operator T is strongly quasidiagonal if every irreducible representation of $C^*(T)$ is quasidiagonal (i.e., contained in the sum of the compact operators and a countable direct product of finite-dimensional C^*-algebras). A Fredholm quasidiagonal operator has index 0. Thus N cannot be approximated by strongly quasidiagonal (and hence n-normal) elements of $\bigcup_n F_n \# A_2$.

Note that if we choose S so that $\text{ind}(S - \lambda)$ assumes infinitely many values as λ ranges over the Fredholm resolvent of S, then N cannot be approximated by elements T in $\bigcup_n F_n \# A_2$ with a bound on the cardinality of the set of values of $\text{ind}(T - \lambda)$.

ACKNOWLEDGMENT

The authors wish to express their gratitude to the National Science Foundation for its support while this research was undertaken.

REFERENCES