A METRIC CONDITION WHICH IMPLIED DIMENSION \(\leq 1 \)

MICHAEL LEVIN AND ROMAN POL

(Communicated by James E. West)

ABSTRACT. A class of 1-dimensional spaces is distinguished by special type embeddings in compacta, or a corresponding metric property. In this setting, a simple proof of the Oversteegen-Tymchatyn theorem that the spaces of homeomorphisms of the Sierpiński’s Carpet and the Menger Universal Curve have dimension \(\leq 1 \) is given.

1. INTRODUCTION

We consider only separable metrizable spaces, and by a compactum we mean a compact metrizable space.

Definition 1.1. A subset \(X \) of a compactum \(K \) is \(L \)-embedded in \(K \) if for any open cover \(U \) of \(K \) there is a neighbourhood \(U \) of \(X \) in \(K \) such that every continuum in \(U \) is contained in some element of \(U \).

Theorem 1.2. \(L \)-embedded subsets of compacta are at most 1-dimensional.

We prove this theorem in sec. 3, where we consider a metric condition \((L)\), related to \(L \)-embeddings. Let us notice that a non-trivial connected set can be \(L \)-embedded in a compactum, cf. sec. 4.

There is a link between \(L \)-embeddings and a notion of almost 0-dimensionality introduced in [4].

Definition 1.3 (Oversteegen - Tymchatyn [4]). A space \(X \) is almost 0-dimensional provided there is a countable basis \(B \) in \(X \) such that for each pair \(G, H \) of elements of \(B \) with disjoint closures there is an open-and-closed set \(W \) with \(G \subset W \subset X \setminus H \).

Theorem 1.4 (Oversteegen - Tymchatyn [4]). Almost 0-dimensional spaces are at most 1-dimensional.

The spaces of homeomorphisms of the Sierpiński’s Carpet, the Menger Universal Curve, or more generally, the Menger compacta \(M_{kn} \) with \(k > n \), are almost 0-dimensional; see Oversteegen and Tymchatyn [4], Th.5, cf. also [1], Th.1.3. Theorem 1.4 provided the first proof that the homeomorphism spaces are 1-dimensional (the inequality \(\geq \) was established earlier by Brechner [1], Corollary 3.1.1 and 3.2.1, cf. [1], Question 1 on page 533).

Received by the editors September 14, 1994.

1991 Mathematics Subject Classification. Primary 54F45.

©1997 American Mathematical Society
However, the proof of Theorem 1.4 given in [4], based on a notion of R-trees, is rather complicated, and one of our objectives is to give a simple proof of this very interesting result. To this end, one can show that any almost 0-dimensional space can be L-embedded in some compactum, and then apply Theorem 1.2. We decided to include also, in sec. 2, an even more direct proof of the Oversteegen-Tymchatyn theorem, where L-embedding is used only implicitly, bypassing some difficulties in Theorem 1.2.

2. A proof of the Oversteegen-Tymchatyn theorem

Let X be an almost 0-dimensional space, and let $(A_0, B_0), (A_1, B_1)$ be two pairs of disjoint closed sets in X. We have to find partitions L_i in X between A_i and B_i with $L_0 \cap L_1 = \emptyset$; cf. [2], 1.7.9.

Let \mathcal{B} be a countable basis described in Definition 1.3. For each pair G, H in \mathcal{B} with disjoint closures fix a continuous map from X to $\{0, 1\}$ taking G to 0 and H to 1, and arrange the mappings into a sequence f_1, f_2, \ldots. Let $g_i : X \to [0, 1]$ be continuous maps with $A_i = g_i^{-1}(0), B_i = g_i^{-1}(1), i = 0, 1$, and finally, let ρ be a totally bounded metric for X.

Let us consider a totally bounded metric d on X, defined by

$$d(x, y) = \rho(x, y) + \sum_{i=0}^{1} |g_i(x) - g_i(y)| + \sum_{i=1}^{\infty} 2^{-i} |f_i(x) - f_i(y)|.$$

Let K be the compact completion of X with respect to d. (At this point, one could check, ignoring g_i, that X is L-embedded in K. We choose a more direct argument, although L-embedding will be hidden in our reasoning.)

For each $G \in \mathcal{B}$ choose G^* open in K with $G^* \cap X = G$, and let

$$U = \bigcup \{G^* : G \in \mathcal{B}, \ diam G^* < 1/3\},$$

where the diameter $diam$ refers to the extension of the metric d over K.

If a continuum C in K intersects both sets G^* and H^*, their closures must meet, for otherwise the extension over K of a function f_i separating G and H would split C into two separate pieces. It follows that all continua in U have diameter < 1, and therefore no continuum in U joins the closures clA_i and clB_i of A_i and B_i in K, $i = 0, 1$.

Let $\varphi : K \to [0, 1]$ be a continuous map with $U = \varphi^{-1}(0, 1]$ and let us consider the compact rings

$$K_n = \varphi^{-1}[1/(n + 1), 1/n], \ n = 1, 2, \ldots.$$

Then no component of K_n joins clA_i and clB_i, and since both collections \{$K_{2n-i} : n = 1, 2, \ldots\}$, where $i = 0, 1$, are discrete in the space U, there are partitions S_i in U between $clA_i \cap U$ and $clB_i \cap U$ with $S_i \cap \bigcup \{K_{2n-1} : n = 1, 2, \ldots\} = \emptyset$. Then $S_0 \cap S_1 = \emptyset$, and $L_i = S_i \cap X$ are the partitions we were looking for.

3. A metric condition which implies dimension ≤ 1

In a metric space X, endowed with a metric ρ, we call a pair of sets A, B distant, provided

$$\inf \{\rho(a, b) : a \in A, b \in B\} > 0.$$
Definition 3.1. Given a pair \(A, B \) of disjoint sets in a metric space \(X \) we call a pair of open sets \(G \supset A, H \supset B \) an \(L_\epsilon \)-enlargement for the pair \(A, B \) if \(G \cap H = \emptyset \) and \(X \setminus (G \cup H) \) is a union of a discrete collection \(\mathcal{F} \) of closed sets of diameter \(\leq \epsilon \) such that for each \(F \in \mathcal{F} \) the sets \(\text{cl}G \cap F \) and \(\text{cl}H \cap F \) are distant.

A metric space \(X \) has property \((L)\) if for each pair of distant sets \(A, B \) in \(X \) and every \(\epsilon > 0 \), there is an \(L_\epsilon \)-enlargement for the pair \(A, B \).

Theorem 1.2 follows immediately from the following

Proposition 3.2. Each \(L \)-embedded subspace of a compactum \(K \) has property \((L)\) with respect to any metric inherited from \(K \), and each separable metric space with property \((L)\) is at most 1-dimensional.

Proof. (A) Let \(X \) be \(L \)-embedded in a compactum \(K \), let \(\rho \) be a metric on \(K \), and let \(A, B \) be a pair of subsets of \(X \) with

\[
\inf\{\rho(a, b) : a \in A, b \in B\} = \delta > 0.
\]

Let \(\epsilon > 0 \). We have to find an \(L_\epsilon \)-enlargement for the pair \(A, B \). To this end, let us choose an open neighbourhood \(U \) of \(X \) in \(K \) such that all continua in \(U \) have diameter \(\leq (1/2) \min(\epsilon, \delta) \). Let \(\varphi : X \rightarrow [0, 1] \) be a continuous map with \(U = \varphi^{-1}(0, 1] \), and let \(K_n = \varphi^{-1}[1/(n+1), 1/n] \). In each compactum \(K_n \), no component joins the closures \(\text{cl}A \) and \(\text{cl}B \) of \(A \) and \(B \) in \(K \), and hence each \(K_n \) can be split into two disjoint closed sets containing \(\text{cl}A \cap K_n \) and \(\text{cl}B \cap K_n \), respectively. The collection of “even rings” \(K_{2n} \), \(n = 1, 2, \ldots \), being discrete in \(U \), one can find open sets \(V, W \) in \(U \) with \(\text{cl}A \cap U \subset V \), \(\text{cl}B \cap U \subset W \), \(clV \cap clW \cap U = \emptyset \) and \(\bigcup\{K_{2n} : n = 1, 2, \ldots \} \subset V \cup W \). Then \(U \setminus (V \cup W) \) is contained in the union of the collection of “odd rings” \(K_{2n-1} \), \(n = 1, 2, \ldots \), which is discrete in the space \(U \). Each \(K_{2n-1} \) is a compactum whose components have diameter \(< \epsilon \), and therefore \(K_{2n-1} \) can be split into finitely many disjoint compacta of diameter \(\leq \epsilon \). The compactness guarantees that the traces of \(\text{cl}V \) and \(\text{cl}W \) on any of these pieces are distant. Therefore, the pair \(G = V \cap X \) and \(H = W \cap X \) provides an \(L_\epsilon \)-enlargement for \(A, B \).

(B) Let \(X \) be a metric space with property \((L)\). Let \(F \) be a closed set in \(X \) and \(p \in X \setminus F \). We have to find open sets \(V, W \) in \(X \) with \(p \in V, F \subset W \), and \(\dim(X \setminus (V \cup W)) \leq 0 \).

We shall define two increasing sequences of open sets

\[
p \in G_1 \subset G_2 \subset \ldots , \quad F \subset H_1 \subset H_2 \subset \ldots
\]

such that \(\text{cl}G_n \cap \text{cl}H_n = \emptyset \) and each pair \(G_{n+1}, H_{n+1} \) is an \(L_{1/n} \)-enlargement for the pair of the closures \(\text{cl}G_n, \text{cl}H_n \).

We begin with a distant pair \(G_1, H_1 \) of open sets containing \(p \) and \(F \), respectively. Suppose \(G_n, H_n \) have been defined. For \(n = 1 \), we get \(G_2, H_2 \) directly from property \((L)\).

Assume \(n \geq 2 \), and let \(X \setminus (G_n \cup H_n) \) be the union of a discrete family \(\mathcal{F} \) of closed sets such that for each \(F \in \mathcal{F} \) the sets

\[
A(F) = \text{cl}G_n \cap F , \quad B(F) = \text{cl}H_n \cap F
\]

are distant. Let \(G(F) \supset A(F) \) and \(H(F) \supset B(F) \) be an \(L_{1/n} \)-enlargement for the pair \(A(F), B(F) \). For each \(F \in \mathcal{F} \), let \(U(F) \supset F \) be an open set such that the
collection of closures \(\{ \text{cl } U(F) : F \in \mathcal{F} \} \) is discrete. Then we can define

\[
G_{n+1} = G_n \cup \bigcup \{ G(F) \cap U(F) : F \in \mathcal{F} \},
\]

\[
H_{n+1} = H_n \cup \bigcup \{ H(F) \cap U(F) : F \in \mathcal{F} \}.
\]

Finally, we put \(V = \bigcup_n G_n \), \(W = \bigcup_n H_n \). For each \(\epsilon > 0 \), the complement \(X \setminus (V \cup W) \) is a union of a discrete collection of closed sets of diameter \(\leq \epsilon \), and therefore it is at most 0-dimensional. \(\square \)

4. Examples

4.1. Let \(X \) be a subspace of a compactum \(K \) such that all but countably many points of \(X \) have a basis of closed-and-open sets in \(K \). Then, as one can easily check, \(X \) is \(L \)-embedded in \(K \). In particular, a one-dimensional set defined by Kuratowski \([3]\) is \(L \)-embedded in its closure in the plane.

We have already noticed (cf. the remark in brackets, following the definition of \(d \) in sec. 2) that each almost 0-dimensional space can be \(L \)-embedded in some compactum. The construction of Kuratowski we have just mentioned provides \(L \)-embedded sets which are not totally disconnected, and hence not almost 0-dimensional. But, as we shall see in the next example, non-trivial \(L \)-embedded sets may be even connected.

4.2. Let \(S \) be the space of the points in the separable Hilbert space \(l^2 \) with all coordinates rational. Then \(S \) is almost 0-dimensional \([4]\), sec.1. Roberts \([5]\) proved that one can add to \(S \) a single point \(p \), obtaining a connected space \(X = \{ p \} \cup S \). We shall show that there is a compactification \(K \) of \(X \) in \(l^2 \).

Let \(\rho \) be a totally bounded metric for \(X \). Let \(\mathcal{B} \) be a basis in \(S \) described in Definition 1.3 and let \(f_i : S \to \{ -1, 1 \} \) be continuous maps such that for each pair \(G, H \) of elements of \(\mathcal{B} \) with disjoint closures in \(S \), there is some \(f_i \) which takes \(G \) to \(-1\) and \(H \) to \(-1\). Let us consider continuous maps \(u_i \) on \(X \) defined by \(u_i(p) = 0 \) and \(u_i(x) = \rho(x, p) \cdot f_i(x) \) for \(x \in S \). Then

\[
d(x, y) = \rho(x, y) + \sum_{i=1}^{\infty} 2^{-i} | u_i(x) - u_i(y) |
\]

is a totally bounded metric on \(X \). We shall verify that \(X \) is \(L \)-embedded in the compact completion \(K \) of \(X \) with respect to \(d \).

The metric \(\rho \) and the functions \(u_i \) extend continuously over \(K \), and we shall keep the same symbols for the extensions. Let

\[
Z = \{ x \in K : \rho(x, p) = 0 \},
\]

\[
G_i = \{ x \in K : u_i(x) < 0 \}, \quad H_i = \{ x \in K : u_i(x) > 0 \}.
\]

One readily checks that

\[
K \setminus Z \subset G_i \cup H_i \quad \text{for } i = 1, 2, \ldots .
\]

Let \(\mathcal{U} \) be an open cover of \(K \) and let \(\delta > 0 \) be such that each set of diameter \(\leq \delta \) in \(K \) is contained in some element of \(\mathcal{U} \). For every \(G \in \mathcal{B} \) choose \(G^* \subset K \setminus Z \), open in \(K \), with \(G^* \cap X = G \), and let \(W \) be the union of the sets \(G^* \) of diameter \(\leq \delta/16 \). The neighbourhood \(U \) of \(X \) in \(K \) required by Definition 1.1, will be the union of \(W \) and the open \(\delta/4 \)-ball \(B(p, \delta/4) \) about \(p \) in \(K \). Let us check that each continuum \(C \)
A METRIC CONDITION WHICH IMPLIES DIMENSION ≤ 1

in U has diameter $\leq \delta$. Aiming at a contradiction, suppose that diam$C > \delta$. Then there is a continuum T in $C \cap W$ of diameter $\geq \delta/4$. Indeed, consider $q \in C$ with $d(p, q) > \delta/2$. If C is disjoint from $B(p, \delta/4)$, we can take $T = C$. Otherwise, let T be any continuum in C joining q with the boundary of $B(p, \delta/4)$. Let us consider $a, b \in T$ with $d(a, b) \geq \delta/4$. Since $T \subset W$, there are $G, H \in B$ of diameter $\leq \delta/16$, with $a \in G^*$ and $b \in H^*$. But then the closures of G and H are disjoint and, for some i, u_i is negative on G and positive on H. By (\star), T being disjoint from Z, the function u_i changes its sign, never vanishing on T, which contradicts connectivity of T.

REFERENCES

3. K.Kuratowski, Une application des images de functions á la construction de certains ensembles singuliers, Mathematica 6 (1932), 120-123.

Department of Mathematics, Haifa University, Mount Carmel, Haifa 31905, Israel
E-mail address: levin@mathcs2.haifa.ac.il

Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland
E-mail address: pol@mimuw.edu.pl