Projective structures on moduli spaces

of compact complex hypersurfaces

Authors:
Sergey Merkulov and Henrik Pedersen

Journal:
Proc. Amer. Math. Soc. **125** (1997), 407-416

MSC (1991):
Primary 32G10, 32L25, 53A15, 53B05, 53B10

DOI:
https://doi.org/10.1090/S0002-9939-97-03408-4

MathSciNet review:
1328363

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that moduli spaces of complete families of compact complex hypersurfaces in complex manifolds often come equipped canonically with projective structures satisfying some natural integrability conditions.

**[A]**M. F. Atiyah,*The signature of fibre bundles*, in*Global Analysis*, Papers in honor of K. Kodaira (D. C. Spencer and S. Yanaga, eds.), Princeton Univ. Press, Princeton, 1969, 73-84. MR**40:8071****[H]**N. Hitchin,*Complex manifolds and Einstein's equations*, In: H. D. Doebner, et al. (eds.)*Twistor geometry and non-linear systems*, Lect. Notes Math., vol. 970, Springer-Verlag, Berlin, Heidelberg, New York, 1982, pp. 73-99. MR**84i:32041****[K-1]**K. Kodaira,*A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds*, Ann. of Math.**75**(1962), 146-162. MR**24:A3665b****[K-2]**-,*Complex manifolds and deformations of complex structures*, Springer-Verlag, New York, Berlin, Heidelberg, and Tokyo, 1986. MR**87d:32040****[K-3]**K. Kodaira and D. C. Spencer,*On deformations of complex analytic structures*, I, Ann. of Math.**67**(1958), 328-401. MR**22:3009****[L]**C. LeBrun,*Spaces of complex geodesics and related structures*, D. Phil. Thesis, Oxford University, 1980.**[M]**S. A. Merkulov,*Relative deformation theory and differential geometry*, In: S. A. Huggett, ed.,*Twistor Theory*, Marcel Dekker, New York, 1995, pp. 107-132. MR**96b:32025****[P]**H. Pedersen,*Einstein-Weyl Spaces and -Curves in the Quadric Surface*, Ann. Global Anal. Geom.**4**(1986), 89-120. MR**88j:53045****[PT]**H. Pedersen and K. P. Tod,*Three-dimensional Einstein-Weyl Geometry*, Adv. Math.**97**(1992), 74-109. MR**93m:53042****[Pe]**R. Penrose,*Non-linear gravitons and curved twistor theory*, Gen. Rel. Grav.**7**(1976), 31-52. MR**55:11905**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
32G10,
32L25,
53A15,
53B05,
53B10

Retrieve articles in all journals with MSC (1991): 32G10, 32L25, 53A15, 53B05, 53B10

Additional Information

**Sergey Merkulov**

Affiliation:
School of Mathematics and Statistics, University of Plymouth, Plymouth, Devon PL4 8AA, United Kingdom

Address at time of publication:
Department of Pure Mathematics, University of Glasgow, 15 University Gardens, Glasgow G12 8QW, United Kingdom

**Henrik Pedersen**

Affiliation:
Department of Mathematics and Computer Science, Odense University, Campusvej 55, 5230 Odense M, Denmark

DOI:
https://doi.org/10.1090/S0002-9939-97-03408-4

Received by editor(s):
April 12, 1994

Received by editor(s) in revised form:
April 13, 1995

Communicated by:
Christopher Croke

Article copyright:
© Copyright 1997
American Mathematical Society