On a theorem of Privalov and normal functions
Author:
Daniel Girela
Journal:
Proc. Amer. Math. Soc. 125 (1997), 433442
MSC (1991):
Primary 30D45, 30D55
MathSciNet review:
1363422
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A well known result of Privalov asserts that if is a function which is analytic in the unit disc , then has a continuous extension to the closed unit disc and its boundary function is absolutely continuous if and only if belongs to the Hardy space . In this paper we prove that this result is sharp in a very strong sense. Indeed, if, as usual, we prove that for any positive continuous function defined in with , as , there exists a function analytic in which is not a normal function and with the property that , for all sufficiently close to .
 [1]
J.
M. Anderson, J.
Clunie, and Ch.
Pommerenke, On Bloch functions and normal functions, J. Reine
Angew. Math. 270 (1974), 12–37. MR 0361090
(50 #13536)
 [2]
Albert
Baernstein II and J.
E. Brown, Integral means of derivatives of monotone slit
mappings, Comment. Math. Helv. 57 (1982), no. 2,
331–348. MR
684119 (85j:30033), http://dx.doi.org/10.1007/BF02565863
 [3]
Colin
Bennett and Manfred
Stoll, Derivatives of analytic functions and bounded mean
oscillation, Arch. Math. (Basel) 47 (1986),
no. 5, 438–442. MR 870281
(88a:30074), http://dx.doi.org/10.1007/BF01189985
 [4]
Robert
D. Berman, Leon
Brown, and William
S. Cohn, Moduli of continuity and generalized BCH sets, Rocky
Mountain J. Math. 17 (1987), no. 2, 315–338. MR 892461
(88j:30010), http://dx.doi.org/10.1216/RMJ1987172315
 [5]
Oscar
Blasco and Geraldo
Soares De Souza, Spaces of analytic functions on the disc where the
growth of 𝑀_{𝑝}(𝐹,𝑟) depends on a
weight, J. Math. Anal. Appl. 147 (1990), no. 2,
580–598. MR 1050229
(92e:46051), http://dx.doi.org/10.1016/0022247X(90)90372M
 [6]
Paul
S. Bourdon, Joel
H. Shapiro, and William
T. Sledd, Fourier series, mean Lipschitz spaces, and bounded mean
oscillation, Analysis at Urbana, Vol.\ I (Urbana, IL, 1986–1987)
London Math. Soc. Lecture Note Ser., vol. 137, Cambridge Univ.
Press, Cambridge, 1989, pp. 81–110. MR 1009170
(90j:42011)
 [7]
Joseph
A. Cima and Karl
E. Petersen, Some analytic functions whose boundary values have
bounded mean oscillation, Math. Z. 147 (1976),
no. 3, 237–247. MR 0404631
(53 #8431)
 [8]
Peter
L. Duren, Theory of 𝐻^{𝑝} spaces, Pure and
Applied Mathematics, Vol. 38, Academic Press, New YorkLondon, 1970. MR 0268655
(42 #3552)
 [9]
Olli
Lehto and K.
I. Virtanen, Boundary behaviour and normal meromorphic
functions, Acta Math. 97 (1957), 47–65. MR 0087746
(19,403f)
Peter
Seibert, Sur les chemins asymptotiques des fonctions
méromorphes, C. R. Acad. Sci. Paris 244
(1957), 1443–1445 (French). MR 0087745
(19,403e)
T.
Kövári, A note on entire functions, Acta Math.
Acad. Sci. Hungar. 8 (1957), 87–90. MR 0087742
(19,403b)
A.
Edrei and G.
R. MacLane, On the zeros of the derivatives of an
entire function, Proc. Amer. Math. Soc. 8 (1957), 702–706.
MR
0087741 (19,403a), http://dx.doi.org/10.1090/S00029939195700877418
Yu.
L. Rabinovič, On entire functions representable as Laplace
integrals, Moskov. Gos. Univ. Uč. Zap. 181. Mat.
8 (1956), 199–221 (Russian). MR 0087744
(19,403d)
M.
M. Crum, Note on functions of exponential type in a
halfplane, Quart. J. Math., Oxford Ser. (2) 6
(1955), 283–287. MR 0087743
(19,403c)
 [10]
Jüri
Lippus, On multipliers preserving the classes of functions with a
given major of the modulus of continuity, J. Approx. Theory
66 (1991), no. 2, 190–197. MR 1115278
(92m:42010), http://dx.doi.org/10.1016/00219045(91)90120Y
 [11]
K.
I. Oskolkov, Estimation of the rate of approximation of a
continuous function and its conjugate by Fourier sums on a set of full
measure, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974),
1393–1407 (Russian). MR 0358198
(50 #10663)
 [12]
K.
I. Oskolkov, The uniform modulus of continuity of summable
functions on sets of positive measure, Dokl. Akad. Nauk SSSR
229 (1976), no. 2, 304–306 (Russian). MR 0470150
(57 #9917)
 [13]
K.
I. Oskolkov, Approximation properties of integrable functions on
sets of full measure, Mat. Sb. (N.S.) 103(145)
(1977), no. 4, 563–589, 631 (Russian). MR 0473679
(57 #13343)
 [14]
K.
I. Oskolkov, Luzin’s 𝐶property for a conjugate
function, Trudy Mat. Inst. Steklov. 164 (1983),
124–135 (Russian). Orthogonal series and approximations of functions.
MR 752918
(86e:42019)
 [15]
Christian
Pommerenke, Univalent functions, Vandenhoeck & Ruprecht,
Göttingen, 1975. With a chapter on quadratic differentials by Gerd
Jensen; Studia Mathematica/Mathematische Lehrbücher, Band XXV. MR 0507768
(58 #22526)
 [16]
David
Protas, Blaschke products with derivative in 𝐻^{𝑝}
and 𝐵^{𝑝}, Michigan Math. J. 20
(1973), 393–396. MR 0344478
(49 #9217)
 [17]
Roger
Chalkley, Analytic solutions of algebraic differential
equations, SIAM J. Math. Anal. 10 (1979), no. 4,
778–782. MR
533949 (81k:34002), http://dx.doi.org/10.1137/0510073
 [18]
Sh.
Strelitz, On meromorphic solutions of algebraic
differential equations, Trans. Amer. Math.
Soc. 258 (1980), no. 2, 431–440. MR 558182
(82a:34006), http://dx.doi.org/10.1090/S00029947198005581829
 [1]
 J. M. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 1237. MR 50:13536
 [2]
 A. Baernstein and J. E. Brown, Integral means of derivatives of monotone slit mappings, Comment. Math. Helvetici 57 (1982), 331348. MR 85j:30033
 [3]
 C. Bennett and M. Stoll, Derivatives of analytic functions and bounded mean oscillation, Arch. Math. 47 (1986), 438442. MR 88a:30074
 [4]
 R. D. Berman, L. Brown and W. S. Cohn, Moduli of continuity and generalized BCH sets, Rocky Mountain J. Math. 17 (3) (1987), 315338. MR 88j:30010
 [5]
 O. Blasco and G. Soares de Souza, Spaces of analytic functions on the disc where the growth of depends on a weight, J. Math. Anal. Appl. 147 (2) (1990), 580598. MR 92e:46051
 [6]
 P. Bourdon, J. Shapiro and W. Sledd, Fourier series, mean Lipschitz spaces and bounded mean oscillation, Analysis at Urbana 1, Proceedings of the Special Year in Modern Analysis at the University of Illinois, 198687 (E. R. Berkson, N. T. Peck and J. Uhl, eds.), London Math. Soc. Lecture note series 137, Cambridge Univ. Press, 1989, pp. 81110. MR 90j:42011
 [7]
 J. A. Cima and K. E. Petersen, Some analytic functions whose boundary values have bounded mean oscillation, Math. Z. 147 (1976), 237247. MR 53:8431
 [8]
 P. L. Duren, Theory of spaces, Academic Press (New York), 1970. MR 42:3552
 [9]
 O. Lehto and K. J. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 4765. MR 19:403
 [10]
 J. Lippus, On multipliers preserving the classes of functions with a given major of the modulus of continuity, J. Approx. Th. 66 (1991), 190197. MR 92m:42010
 [11]
 K. I. Oskolkov, An estimate of the rate of approximation of a continuous function and its conjugate by Fourier sums on a set of total measure, Izv. Acad. Nauk SSSR Ser. Mat. 38 (1974), no.6, 13931407 (Russian); English transl. in Math. USSR Izv. 8 (6) (1974), no. 6, 13721386 (1976). MR 50:10663
 [12]
 K. I. Oskolkov, Uniform modulus of continuity of summable functions on sets of positive measure, Dokl. Akad. Nauk SSSR 229 (1976), no.2, 304306 (Russian); English transl. in Sov. Math. Dokl. 17 (1976), no. 4, 10281030 (1977). MR 57:9917
 [13]
 K. I. Oskolkov, Approximation properties of summable functions on sets of full measure, Mat. Sbornik, n. Ser. 103(145) (1977), 563589 (Russian); English transl. in Math. USSR Sbornik 32 (1977), no. 4, 489514 (1978). MR 57:13343
 [14]
 K. I. Oskolkov, On Luzin's Cproperty for a conjugate function, Trudy Mat. Inst. Steklova 164 (1983), 124135 (Russian); English transl. in Proc. Steklov Inst. Math. 164 (1985), 141153. MR 86e:42019
 [15]
 Ch. Pommerenke, Univalent Functions, Vandenhoeck und Ruprecht, Göttingen, 1975. MR 58:22526
 [16]
 D. Protas, Blaschke products with derivative in and , Michigan Math. J. 20 (1973), 393396. MR 49:9217
 [17]
 S. Yamashita, A nonnormal function whose derivative has finite area integral of order , Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (2) (1979), 293398. MR 81k:34002
 [18]
 S. Yamashita, A nonnormal function whose derivative is of Hardy class , , Canad. Math. Bull. 23 (4) (1980), 499500. MR 82a:34006
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
30D45,
30D55
Retrieve articles in all journals
with MSC (1991):
30D45,
30D55
Additional Information
Daniel Girela
Affiliation:
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
Email:
Girela@ccuma.sci.uma.es
DOI:
http://dx.doi.org/10.1090/S0002993997035442
PII:
S 00029939(97)035442
Keywords:
Normal functions,
Hardy spaces,
integral means,
theorem of Privalov
Received by editor(s):
November 1, 1994
Received by editor(s) in revised form:
June 25, 1995
Additional Notes:
This research has been supported in part by a D.G.I.C.Y.T. grant (PB910413) and by a grant from “La Junta de Andalucía”
Communicated by:
Albert Baernstein II
Article copyright:
© Copyright 1997
American Mathematical Society
