On a theorem of Privalov and normal functions

Author:
Daniel Girela

Journal:
Proc. Amer. Math. Soc. **125** (1997), 433-442

MSC (1991):
Primary 30D45, 30D55

MathSciNet review:
1363422

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A well known result of Privalov asserts that if is a function which is analytic in the unit disc , then has a continuous extension to the closed unit disc and its boundary function is absolutely continuous if and only if belongs to the Hardy space . In this paper we prove that this result is sharp in a very strong sense. Indeed, if, as usual, we prove that for any positive continuous function defined in with , as , there exists a function analytic in which is not a normal function and with the property that , for all sufficiently close to .

**[1]**J. M. Anderson, J. Clunie, and Ch. Pommerenke,*On Bloch functions and normal functions*, J. Reine Angew. Math.**270**(1974), 12–37. MR**0361090****[2]**Albert Baernstein II and J. E. Brown,*Integral means of derivatives of monotone slit mappings*, Comment. Math. Helv.**57**(1982), no. 2, 331–348. MR**684119**, 10.1007/BF02565863**[3]**Colin Bennett and Manfred Stoll,*Derivatives of analytic functions and bounded mean oscillation*, Arch. Math. (Basel)**47**(1986), no. 5, 438–442. MR**870281**, 10.1007/BF01189985**[4]**Robert D. Berman, Leon Brown, and William S. Cohn,*Moduli of continuity and generalized BCH sets*, Rocky Mountain J. Math.**17**(1987), no. 2, 315–338. MR**892461**, 10.1216/RMJ-1987-17-2-315**[5]**Oscar Blasco and Geraldo Soares De Souza,*Spaces of analytic functions on the disc where the growth of 𝑀_{𝑝}(𝐹,𝑟) depends on a weight*, J. Math. Anal. Appl.**147**(1990), no. 2, 580–598. MR**1050229**, 10.1016/0022-247X(90)90372-M**[6]**Paul S. Bourdon, Joel H. Shapiro, and William T. Sledd,*Fourier series, mean Lipschitz spaces, and bounded mean oscillation*, Analysis at Urbana, Vol. I (Urbana, IL, 1986–1987) London Math. Soc. Lecture Note Ser., vol. 137, Cambridge Univ. Press, Cambridge, 1989, pp. 81–110. MR**1009170****[7]**Joseph A. Cima and Karl E. Petersen,*Some analytic functions whose boundary values have bounded mean oscillation*, Math. Z.**147**(1976), no. 3, 237–247. MR**0404631****[8]**Peter L. Duren,*Theory of 𝐻^{𝑝} spaces*, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR**0268655****[9]**Olli Lehto and K. I. Virtanen,*Boundary behaviour and normal meromorphic functions*, Acta Math.**97**(1957), 47–65. MR**0087746**

Peter Seibert,*Sur les chemins asymptotiques des fonctions méromorphes*, C. R. Acad. Sci. Paris**244**(1957), 1443–1445 (French). MR**0087745**

T. Kövári,*A note on entire functions*, Acta Math. Acad. Sci. Hungar.**8**(1957), 87–90. MR**0087742**

A. Edrei and G. R. MacLane,*On the zeros of the derivatives of an entire function*, Proc. Amer. Math. Soc.**8**(1957), 702–706. MR**0087741**, 10.1090/S0002-9939-1957-0087741-8

Yu. L. Rabinovič,*On entire functions representable as Laplace integrals*, Moskov. Gos. Univ. Uč. Zap. 181. Mat.**8**(1956), 199–221 (Russian). MR**0087744**

M. M. Crum,*Note on functions of exponential type in a half-plane*, Quart. J. Math., Oxford Ser. (2)**6**(1955), 283–287. MR**0087743****[10]**Jüri Lippus,*On multipliers preserving the classes of functions with a given major of the modulus of continuity*, J. Approx. Theory**66**(1991), no. 2, 190–197. MR**1115278**, 10.1016/0021-9045(91)90120-Y**[11]**K. I. Oskolkov,*Estimation of the rate of approximation of a continuous function and its conjugate by Fourier sums on a set of full measure*, Izv. Akad. Nauk SSSR Ser. Mat.**38**(1974), 1393–1407 (Russian). MR**0358198****[12]**K. I. Oskolkov,*The uniform modulus of continuity of summable functions on sets of positive measure*, Dokl. Akad. Nauk SSSR**229**(1976), no. 2, 304–306 (Russian). MR**0470150****[13]**K. I. Oskolkov,*Approximation properties of integrable functions on sets of full measure*, Mat. Sb. (N.S.)**103(145)**(1977), no. 4, 563–589, 631 (Russian). MR**0473679****[14]**K. I. Oskolkov,*Luzin’s 𝐶-property for a conjugate function*, Trudy Mat. Inst. Steklov.**164**(1983), 124–135 (Russian). Orthogonal series and approximations of functions. MR**752918****[15]**Christian Pommerenke,*Univalent functions*, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen; Studia Mathematica/Mathematische Lehrbücher, Band XXV. MR**0507768****[16]**David Protas,*Blaschke products with derivative in 𝐻^{𝑝} and 𝐵^{𝑝}*, Michigan Math. J.**20**(1973), 393–396. MR**0344478****[17]**Roger Chalkley,*Analytic solutions of algebraic differential equations*, SIAM J. Math. Anal.**10**(1979), no. 4, 778–782. MR**533949**, 10.1137/0510073**[18]**Sh. Strelitz,*On meromorphic solutions of algebraic differential equations*, Trans. Amer. Math. Soc.**258**(1980), no. 2, 431–440. MR**558182**, 10.1090/S0002-9947-1980-0558182-9

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
30D45,
30D55

Retrieve articles in all journals with MSC (1991): 30D45, 30D55

Additional Information

**Daniel Girela**

Affiliation:
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain

Email:
Girela@ccuma.sci.uma.es

DOI:
https://doi.org/10.1090/S0002-9939-97-03544-2

Keywords:
Normal functions,
Hardy spaces,
integral means,
theorem of Privalov

Received by editor(s):
November 1, 1994

Received by editor(s) in revised form:
June 25, 1995

Additional Notes:
This research has been supported in part by a D.G.I.C.Y.T. grant (PB91-0413) and by a grant from “La Junta de Andalucía”

Communicated by:
Albert Baernstein II

Article copyright:
© Copyright 1997
American Mathematical Society