Convolution of a measure with itself

and a restriction theorem

Authors:
Jong-Guk Bak and David McMichael

Journal:
Proc. Amer. Math. Soc. **125** (1997), 463-470

MSC (1991):
Primary 42B10

DOI:
https://doi.org/10.1090/S0002-9939-97-03569-7

MathSciNet review:
1350932

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let and be the measure defined by . Let denote the measure obtained by restricting to the set . We prove estimates on . As a corollary we obtain results on the restriction to of the Fourier transform of functions on for , .

**[B]**J.-G. Bak,*Sharp convolution estimates for measures on flat surfaces*, J. Math. Anal. Appl.**193**(1995), 756-771. CMP**95:15****[Bo]**J. Bourgain,*Besicovitch-type maximal operators and applications to Fourier analysis*, Geom. and Funct. Anal.**1**(1991), 147-187. MR**92g:42010****[Fe]**H. Federer,*Geometric Measure Theory*, Springer-Verlag, New York, 1969. MR**41:1976****[F]**C. Fefferman,*Inequalities for strongly singular convolution operators*, Acta Math.**124**(1970), 9-36. MR**41:2468****[GS]**I. M. Gelfand and G. E. Shilov,*Generalized Functions, Vol. I*, Academic Press, New York, 1964. MR**29:3869****[H]**L. Hörmander,*Oscillatory integrals and multipliers on*, Ark. Mat.**11**(1973), 1-11. MR**49:5674****[O]**R. O'Neil,*Convolution operators and spaces*, Duke Math. J.**30**(1963), 129-142. MR**26:4193****[So]**C. Sogge,*A sharp restriction theorem for degenerate curves in*, Amer. J. Math.**109**(1987), 223-228. MR**88e:42027****[S]**E. M. Stein,*Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals*, Princeton Univ. Press, Princeton, NJ, 1993. MR**95c:42002****[SW]**E. M. Stein and G. Weiss,*Introduction to Fourier Analysis on Euclidean Spaces*, Princeton Univ. Press, Princeton, NJ, 1971. MR**46:4102****[Sz]**R. S. Strichartz,*Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations*, Duke Math. J.**44**(1977), 705-713. MR**58:23577****[T]**P. Tomas,*Restriction theorems for the Fourier transform*, in Proceedings of Symposia in Pure Mathematics, Vol. 35, pp. 111-114, Amer. Math. Soc., 1979. MR**81d:42029****[Z]**A. Zygmund,*On Fourier coefficients and transforms of two variables*, Studia Math.**50**(1974), 189-201. MR**52:8788**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
42B10

Retrieve articles in all journals with MSC (1991): 42B10

Additional Information

**Jong-Guk Bak**

Affiliation:
Department of Mathematics, Pohang University of Science and Technology, Pohang 790-784, Korea

Email:
bak@euclid.postech.ac.kr

**David McMichael**

Affiliation:
Department of Mathematics, Florida State University, Tallahassee, Florida 32306

DOI:
https://doi.org/10.1090/S0002-9939-97-03569-7

Received by editor(s):
April 13, 1995

Received by editor(s) in revised form:
August 10, 1995

Additional Notes:
The first author was supported in part by a grant from TGRC–KOSEF of Korea.

Communicated by:
J. Marshall Ash

Article copyright:
© Copyright 1997
American Mathematical Society