Convolution of a measure with itself

and a restriction theorem

Authors:
Jong-Guk Bak and David McMichael

Journal:
Proc. Amer. Math. Soc. **125** (1997), 463-470

MSC (1991):
Primary 42B10

MathSciNet review:
1350932

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let and be the measure defined by . Let denote the measure obtained by restricting to the set . We prove estimates on . As a corollary we obtain results on the restriction to of the Fourier transform of functions on for , .

**[B]**J.-G. Bak,*Sharp convolution estimates for measures on flat surfaces*, J. Math. Anal. Appl.**193**(1995), 756-771. CMP**95:15****[Bo]**J. Bourgain,*Besicovitch type maximal operators and applications to Fourier analysis*, Geom. Funct. Anal.**1**(1991), no. 2, 147–187. MR**1097257**, 10.1007/BF01896376**[Fe]**Herbert Federer,*Geometric measure theory*, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR**0257325****[F]**Charles Fefferman,*Inequalities for strongly singular convolution operators*, Acta Math.**124**(1970), 9–36. MR**0257819****[GS]**I. M. Gel’fand and G. E. Shilov,*Generalized functions. Vol. I: Properties and operations*, Translated by Eugene Saletan, Academic Press, New York-London, 1964. MR**0166596****[H]**Lars Hörmander,*Oscillatory integrals and multipliers on 𝐹𝐿^{𝑝}*, Ark. Mat.**11**(1973), 1–11. MR**0340924****[O]**Richard O’Neil,*Convolution operators and 𝐿(𝑝,𝑞) spaces*, Duke Math. J.**30**(1963), 129–142. MR**0146673****[So]**Christopher D. Sogge,*A sharp restriction theorem for degenerate curves in 𝑅²*, Amer. J. Math.**109**(1987), no. 2, 223–228. MR**882421**, 10.2307/2374572**[S]**Elias M. Stein,*Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR**1232192****[SW]**Elias M. Stein and Guido Weiss,*Introduction to Fourier analysis on Euclidean spaces*, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. MR**0304972****[Sz]**Robert S. Strichartz,*Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations*, Duke Math. J.**44**(1977), no. 3, 705–714. MR**0512086****[T]**Peter A. Tomas,*Restriction theorems for the Fourier transform*, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 111–114. MR**545245****[Z]**A. Zygmund,*On Fourier coefficients and transforms of functions of two variables*, Studia Math.**50**(1974), 189–201. MR**0387950**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
42B10

Retrieve articles in all journals with MSC (1991): 42B10

Additional Information

**Jong-Guk Bak**

Affiliation:
Department of Mathematics, Pohang University of Science and Technology, Pohang 790-784, Korea

Email:
bak@euclid.postech.ac.kr

**David McMichael**

Affiliation:
Department of Mathematics, Florida State University, Tallahassee, Florida 32306

DOI:
http://dx.doi.org/10.1090/S0002-9939-97-03569-7

Received by editor(s):
April 13, 1995

Received by editor(s) in revised form:
August 10, 1995

Additional Notes:
The first author was supported in part by a grant from TGRC–KOSEF of Korea.

Communicated by:
J. Marshall Ash

Article copyright:
© Copyright 1997
American Mathematical Society