Local Jordan -Derivations

of Standard Operator Algebras

Authors:
Lajos Molnár and Peter Semrl

Journal:
Proc. Amer. Math. Soc. **125** (1997), 447-454

MSC (1991):
Primary 47B47, 47D25

MathSciNet review:
1350958

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that on standard operator algebras every local Jordan -derivation is a Jordan -derivation.

**[1]**Matej Brešar and Peter Šemrl,*Mappings which preserve idempotents, local automorphisms, and local derivations*, Canad. J. Math.**45**(1993), no. 3, 483–496. MR**1222512**, 10.4153/CJM-1993-025-4**[2]**M. Bre\v{s}ar and P. \v{S}emrl,*On local automorphisms and mappings that preserve idempotents*, Studia Math.**113**(1995), 101-108.**[3]**Paul R. Chernoff,*Representations, automorphisms, and derivations of some operator algebras*, J. Functional Analysis**12**(1973), 275–289. MR**0350442****[4]**I. N. Herstein,*Jordan derivations of prime rings*, Proc. Amer. Math. Soc.**8**(1957), 1104–1110. MR**0095864**, 10.1090/S0002-9939-1957-0095864-2**[5]**B. E. Johnson and A. M. Sinclair,*Continuity of derivations and a problem of Kaplansky*, Amer. J. Math.**90**(1968), 1067–1073. MR**0239419****[6]**Richard V. Kadison,*Local derivations*, J. Algebra**130**(1990), no. 2, 494–509. MR**1051316**, 10.1016/0021-8693(90)90095-6**[7]**Irving Kaplansky,*Ring isomorphisms of Banach algebras*, Canadian J. Math.**6**(1954), 374–381. MR**0062960****[8]**David R. Larson and Ahmed R. Sourour,*Local derivations and local automorphisms of ℬ(𝒳)*, Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 187–194. MR**1077437**, 10.1090/pspum/051.2/1077437**[9]**L. Molnár,*Locally inner derivations of standard operator algebras*, Math. Bohem.**121**(1996), 1-7.**[10]**Peter Šemrl,*Quadratic functionals and Jordan *-derivations*, Studia Math.**97**(1991), no. 3, 157–165. MR**1100685****[11]**Peter Šemrl,*Quadratic and quasi-quadratic functionals*, Proc. Amer. Math. Soc.**119**(1993), no. 4, 1105–1113. MR**1158008**, 10.1090/S0002-9939-1993-1158008-3**[12]**Peter Šemrl,*Jordan *-derivations of standard operator algebras*, Proc. Amer. Math. Soc.**120**(1994), no. 2, 515–518. MR**1186136**, 10.1090/S0002-9939-1994-1186136-6

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
47B47,
47D25

Retrieve articles in all journals with MSC (1991): 47B47, 47D25

Additional Information

**Lajos Molnár**

Affiliation:
Institute of Mathematics, Lajos Kossuth University, H-4010 Debrecen, P.O.Box 12, Hungary

Email:
molnarl@math.klte.hu

**Peter Semrl**

Affiliation:
Faculty of Technical Sciences, University of Maribor, Smetanova 17, P.O.Box 224, 62000 Maribor, Slovenia

Email:
peter.semrl@uni-lj.si

DOI:
https://doi.org/10.1090/S0002-9939-97-03594-6

Keywords:
Standard operator algebra,
Jordan $^*$-derivation,
local Jordan $^*$-derivation

Received by editor(s):
August 4, 1995

Additional Notes:
The first author was partially supported by the Hungarian National Research Science Foundation, and the second author was supported by a grant from the Ministry of Science and Technology of Slovenia

Communicated by:
Palle E. T. Jorgensen

Article copyright:
© Copyright 1997
American Mathematical Society