Local Jordan -Derivations

of Standard Operator Algebras

Authors:
Lajos Molnár and Peter Semrl

Journal:
Proc. Amer. Math. Soc. **125** (1997), 447-454

MSC (1991):
Primary 47B47, 47D25

DOI:
https://doi.org/10.1090/S0002-9939-97-03594-6

MathSciNet review:
1350958

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that on standard operator algebras every local Jordan -derivation is a Jordan -derivation.

**[1]**M. Bre\v{s}ar and P. \v{S}emrl,*Mappings which preserve idempotents, local automorphisms and local derivations*, Canad. J. Math.**45**(1993), 483-496. MR**94k:47054****[2]**M. Bre\v{s}ar and P. \v{S}emrl,*On local automorphisms and mappings that preserve idempotents*, Studia Math.**113**(1995), 101-108.**[3]**P.R. Chernoff,*Representations, automorphisms and derivations of some operator algebras*, J. Funct. Anal.**12**(1973), 275-289. MR**50:2934****[4]**I.N. Herstein,*Jordan derivations of prime rings*, Proc. Amer. Math. Soc.**8**(1957), 1104-1110. MR**20:2362****[5]**B.E. Johnson and A.M. Sinclair,*Continuity of derivations and a problem of Kaplansky*, Amer. J. Math.**90**(1968), 1067-1073. MR**39:776****[6]**R.V. Kadison,*Local derivations*, J. Algebra**130**(1990), 494-509. MR**91f:46092****[7]**I. Kaplansky,*Ring isomorphisms of Banach algebras*, Canad. J. Math.**6**(1954), 374-381. MR**16:49e****[8]**D.R. Larson and A.R. Sourour,*Local derivations and local automorphisms of*, Proc. Sympos. Pure Math.**51**. MR**91k:47106****[9]**L. Molnár,*Locally inner derivations of standard operator algebras*, Math. Bohem.**121**(1996), 1-7.**[10]**P. \v{S}emrl,*Quadratic functionals and Jordan *-derivations*, Studia Math.**97**(1991), 157-165. MR**92d:46139****[11]**P. \v{S}emrl,*Quadratic and quasi-quadratic functionals*, Proc. Amer. Math. Soc.**119**(1993), 1105-1113. MR**94a:15045****[12]**P. \v{S}emrl,*Jordan *-derivations of standard operator algebras*, Proc. Amer. Math. Soc.**120**(1994), 515-518. MR**94d:46066**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
47B47,
47D25

Retrieve articles in all journals with MSC (1991): 47B47, 47D25

Additional Information

**Lajos Molnár**

Affiliation:
Institute of Mathematics, Lajos Kossuth University, H-4010 Debrecen, P.O.Box 12, Hungary

Email:
molnarl@math.klte.hu

**Peter Semrl**

Affiliation:
Faculty of Technical Sciences, University of Maribor, Smetanova 17, P.O.Box 224, 62000 Maribor, Slovenia

Email:
peter.semrl@uni-lj.si

DOI:
https://doi.org/10.1090/S0002-9939-97-03594-6

Keywords:
Standard operator algebra,
Jordan $^*$-derivation,
local Jordan $^*$-derivation

Received by editor(s):
August 4, 1995

Additional Notes:
The first author was partially supported by the Hungarian National Research Science Foundation, and the second author was supported by a grant from the Ministry of Science and Technology of Slovenia

Communicated by:
Palle E. T. Jorgensen

Article copyright:
© Copyright 1997
American Mathematical Society