AN ENGLER CONDITION WITH DERIVATION
FOR LEFT IDEALS

CHARLES LANSKI

(Communicated by Ken Goodearl)

Abstract. We generalize a number of results in the literature by proving the following theorem: Let \(R \) be a semiprime ring, \(D \) a nonzero derivation of \(R \), \(L \) a nonzero left ideal of \(R \), and let \([x, y] = xy - yx\). If for some positive integers \(t_0, t_1, \ldots, t_n \), and all \(x \in L \), the identity \([\ldots[[D(x^{t_0}), x^{t_1}], x^{t_2}]], \ldots], x^{t_n}] = 0\) holds, then either \(D(L) = 0 \) or else the ideal of \(R \) generated by \(D(L) \) and \(D(R)L \) is in the center of \(R \). In particular, when \(R \) is a prime ring, \(R \) is commutative.

In this paper we prove a theorem generalizing several results, principally [20] and [9], which combine derivations with Engel type conditions. Before stating our theorem we discuss the relevant literature. If one defines \([x, y]_0 = x \) and \([x, y]_1 = [x, y] = xy - yx\), then an Engel condition is a polynomial \([x, y]_n + 1 = \ldots[[x, y], y]] = 0\) in noncommuting indeterminates. A commutative ring satisfies any such polynomial, and a nilpotent ring satisfies one if \(n \) is sufficiently large. The question of whether a ring is commutative, or nilpotent, if it satisfies an Engel condition goes back to the well known work of Engel on Lie algebras [15, Chapter 2], and has been considered, with various modifications, by many since then (e.g. [2] or [7]). The connection of Engel type conditions and derivations appeared in a well known paper of E. C. Posner [23] which showed that for a nonzero derivation \(D \) of a prime ring \(R \), if \([D(x), x] \) is central for all \(x \in R \), then \(R \) is commutative. This result has led to many others (see [19] for various references), and in particular to a result of J. Vukman [25] showing that if \([D(x), x]_2 \) is central for all \(x \in R \), a prime ring with char \(R \neq 2, 3 \), then again \(R \) is commutative. We extended this result [20] by proving that if \([D(x), x]_n = 0 \) for all \(x \in I \), an ideal of the prime ring \(R \), then \(R \) is commutative, and if instead, this Engel type condition holds for all \(x \in U \), a Lie ideal of \(R \), then \(R \) embeds in \(M_2(F) \) for \(F \) a field with char \(F = 2 \). Recently, [9] proved that for a left ideal \(L \) of a semiprime ring \(R \), either \(D(L) = 0 \) or \(R \) contains a nonzero central ideal if either: \(R \) is 6-torsion free and \([D(x), x]_2 \) is central for all \(x \in L \); or if \([D(x), x^n] \) is central for all \(x \in L \) and \(R \) is \(n! \)-torsion free. The first of these conditions generalized [1, Theorem 3, p. 99], which assumed that \([D(x), x] \) is central for all \(x \in L \), with no restriction on torsion. The second, involving powers, is related to both [12], which showed that a prime ring \(R \) is commutative if \(D(x^k) = 0 \) for all \(x \in R \), and to [8], a significant extension of [12], showing that \(R \) is commutative if it contains no nonzero nil ideal and \([D(x^k), x^k]_n = 0 \) on
R. Other results and conditions involving the image of a derivation on a one-sided ideal of R have been appearing with increased frequency (e.g. [3], [4], [21], [24]).

Our result here combines a variant of the Engel condition and the action of a derivation on a left ideal in a semiprime ring. It generalizes or extends a number of the results mentioned above and eliminates all torsion assumptions.

Main Theorem. Let R be a semiprime ring, D a nonzero derivation of R, and L a nonzero left ideal of R. If for some positive integers t_0, t_1, \ldots, t_n, and all $x \in L$, the identity $[x, [x, \ldots, [D(x^{t_0}), x^{t_1}], x^{t_2}], \ldots], x^{t_n}] = 0$ holds, then either $D(L) = 0$ or else $D(L)$ and $D(R)L$ are contained in a nonzero central ideal of R. In particular, when R is a prime ring, R is commutative.

Note that the statement about prime rings does follow from the semiprime case since if I is a central ideal in a prime ring R, then the identity $[xy, z] = x[y, z] + [x, z]y$ shows that $0 = [IR, R] = I[R, R]$, so $I = 0$ or R is commutative. Also, when R is prime and $D(L) = 0$, then $D(R)L = D(RL) = 0$, and $D = 0$ results. Something like the conclusion that when R is a prime ring, its extended centroid $C(R) = C$ is a field which is the center of the symmetric quotient ring $Q = Q(R)$ of R. For our purposes it suffices to know that RC and Q are prime overrings of R, for each $q \in Q$ there is a nonzero ideal I_q of R with $qI_q + I_qq \subseteq R$, and if $qI_q = 0$, then $q = 0$. Any derivation D of R extends uniquely to Q, and if on Q, $D(q) = qA - Aq$ for $A \in Q$, then D is called inner; otherwise D is outer. An important result of W. S. Martindale [22] is that R satisfies a generalized polynomial identity exactly when $H = \text{soc } RC \neq 0$ and for each minimal left ideal RCe of RC with $e^2 = e$, $eRCe$ is a finite dimensional division algebra over C.

Theorem 1. Let R be a prime ring, D a nonzero derivation of R, and L a nonzero left ideal of R. If for integers $k, n + 1 \geq 1$, $D(x^k), x^k] = 0$ for all $x \in L$, then R is commutative.

Proof. It is easy to see that if $L \subseteq R \cap C$, then R must be commutative [14, Corollary, p. 7], so we may choose $a \in L - C$. For any $r \in R$, $D((ra)^k), (ra)^k] = 0$, and it follows that

$$[D((Xa)^k), (Xa)^k] = \sum_{i=0}^{k-1} (Xa)^i(XD(a) + XD(a))(Xa)^{k-i-1}, (Xa)^k]_n$$

is an identity with derivation which is satisfied by R. If D is an outer derivation, a direct application of [17, Theorem 2, p. 65] or [6, Main Theorem, p. 251], together with [5, Theorem 2, p. 725] show that $[\sum_{i=0}^{k-1} (Xa)^i(Ya + XD(a))(Xa)^{k-i-1}, (Xa)^k]_n$ is an identity for Q, which yields easily that $[\sum_{i=0}^{k-1} (Xa)^i(Ya)(Xa)^{k-i-1}, (Xa)^k]_n$ is an identity for Q by first setting $Y = 0$. Since $a \notin C$, this identity is a nonzero identity for Q. Therefore, Q is a field, and hence so is R. This completes the proof.
generalized polynomial identity for R, so by Martindale’s theorem [22, Theorem 3, p. 579] $H = \text{soc } RC \neq 0$. Clearly the identity holds on $H \subseteq Q$. If H is commutative, then so is R and we are finished. Otherwise, since $Ha \subseteq H$ [18, Lemma 7, p. 779], there is a minimal left ideal $He \subseteq Ha$ with $e^2 = e \in H$ and $Hta = He$ for some $t \in H$. Consequently, He satisfies $[\sum_{i=0}^{k-1} X^iYX^{k-i-1}, X^k]_n = 0$. Evaluating this expression with $X = he$ and $Y = (1-e)ye$ for arbitrary $h, y \in H$, and using $he(1-e)ye = 0$ results in $(1-e)ye(he)^{k(n+1)-1} = 0$. Because He is minimal, if $(1-e)ye \neq 0$, it follows that $He = H(1-e)ye$, so $(he)^{k(n+1)} = 0$ results. This means that He is a nil left ideal of bounded index and Levitzki’s theorem [13, Lemma 1.1, p. 1] forces R to contain a nonzero nilpotent ideal. This contradiction shows that R must be commutative when D is outer.

We may now take $D(q) = [q, A]$ with $A \in Q - C$, since $D \neq 0$. As above, if we choose $a \in L - C$, then our assumption yields the identity $[A, (ra)^k]_{n+1} = 0$ for R. This is a nonzero generalized polynomial identity because $A \notin C$, so Martindale’s theorem [22, Theorem 3, p. 579] shows that $H = \text{soc } RC \neq 0$ and eHe is finite dimensional over C for $e^2 = e$ a minimal idempotent in H. Now the identity $[A, (Xa)^k]_{n+1}$ is also satisfied by Q [5, Theorem 2, p. 725] and hence by H. As in the case above, R is commutative if H is, so we proceed with the assumption that H is not commutative to get the contradiction $D = 0$.

We want to replace R with H and be able to assume that for any minimal idempotent $e \in H$, $Ce = eHe$. We note that $C = C(H), CH = H$ and $D(H) \subseteq H$ [18, Lemma 7, p. 59], and C centralizes H, so it is clear that $Ce \subseteq Z(eHe)$ for any idempotent $e \in H$. Assume first that C is a finite field. From the finite dimensionality of eHe over Ce it follows that eHe is a finite field, so for $z \in eHe$ and any $h \in H$, $zehe = chez$, which forces $ze = ce$ for $c \in C(H) = C$ [22, Theorem 1, p. 577]. Therefore $Ce = Z(eHe) = eHe$ when C is a finite field. If C is infinite, then a Vandermonde determinant argument, for example that in [20, Lemma 2, p. 732], shows that $[A, (Xa)^k]_{n+1}$ is satisfied by any extension $H \otimes_C F$ of H, for F a field extension of C. In particular we can take F to be an algebraic closure of C. Now $C(H \otimes_C F) = F$ [10, Theorem 3.5, p. 59], $\text{soc } (RC \otimes_C F) = H \otimes_C F$, and for any minimal idempotent $e \in H \otimes_C F$, $e(H \otimes_C F)e$ is finite dimensional over eF, again by [22], so $e(H \otimes_C F)e = eF$ because F is algebraically closed. Consequently, regardless of $\text{card } C$, we may assume that $H = R$ and $eC = eHe$ for any minimal idempotent $e \in H$.

Since H satisfies the identity $[A, (Xa)^k]_{n+1}$, as for the case above when D was assumed to be outer, for some minimal idempotent $e \in H$ and some $t \in H$, $He = Hte$ satisfies the identity $[A, X^k]_{n+1}$. In particular if $X = e$ we obtain $[A, e]_{n+1} = 0$ and also $[A, e]_{n+2} = 0$. Since one of $n + 1$ or $n + 2$ is odd and $[A, e] = [A, e]_3$, it follows immediately that $[A, e] = 0$, and we may write $A = eAe + (1-e)A(1-e)$. But $eAe = e(Ae)e \in eHe = Ce$, so $A = ce + (1-e)A(1-e)$. For any $h \in H$ we evaluate $[A, (he)^k]_{n+1} = 0$ using the identities $[y, x]_{n+1} = \sum_{i=0}^{n+1} (1)^i \binom{n+1}{i} x^i y x^{n+1-i}$ and $[x + y, z]_s = [x, z]_s + [y, z]_s$ to obtain

$$0 = (1-e)A(1-e)(he)^{k(n+1)} + \sum_{i=0}^{n+1} (-1)^i \binom{n+1}{i} (he)^{ki} ec(he)^{k(n+1-i)}$$

$$= (1-e)A(1-e)(he)^{k(n+1)} + ec(he)^{k(n+1)}$$

$$+ ec \sum_{i=1}^{n+1} (-1)^i \binom{n+1}{i} (he)^{ki} e(he)^{k(n+1-i)}$$
commutative, so the first two possibilities each force hypothesis carries over from D we need to prove that for each prime ideal D is semiprime. Consequently, to prove the existence of a nonzero central ideal, it is easy to see that M is semiprime, and M/R, R are fixed but need not assume that R has no nil ideal. Before proving our Main Theorem, it will be helpful to collect a few observations together into a lemma.

Lemma. Let R be a semiprime ring and M the maximal central ideal of R.

1. $M = \text{ann}([R, R])$ is a semiprime ideal of R;
2. if $a \in R$ and Ra is central, then $a \in M$; and
3. if D is a derivation of R, then $D(M) \subseteq M$.

Proof. Since any annihilator ideal in a semiprime ring is a semiprime ideal, it suffices to show that $M = \text{ann}([R, R])$ to prove (1). Let $A = \text{ann}([R, R])$ and note that $0 = [MR, R] = M[R, R]$, so $M \subseteq A$. But $[A, R] \subseteq A \cap ([R, R]) = 0$ since R is semiprime, and $A = M$. Next observe that R/M has no nonzero central ideal. If $M \subseteq I$ is an ideal of R with I/M central in R/M, then $[I, R] \subseteq M$ implies that $[I, R], R] = 0$, so $[I, [R, R]] = 0$ and I is central by [14, Lemma 1.1.8, p. 8] forcing $I = M$. Consequently, if $Ra + M$ is central in R/M, then $Ra \subseteq M$, which results in $a \in M$ by (1). Finally, for any derivation D it is easy to see that $D(Z(R)) \subseteq Z(R)$, the center of R, and then that $M + D(M)$ is an ideal of R in $Z(R)$. Thus $D(M) \subseteq M$ by the maximality of M. □

Proof of Main Theorem. Our assumption that $[[[..., [D(x^t_0), x^t_1, x^t_2], \ldots, x^t_n] = 0$ for all $x \in L$ implies that $[D(x^k), x^k]_n = 0$ for $k = t_0t_1 \cdots t_n$ since powers of x commute, so we may as well assume that all $t_j = k$. We claim that $RD(R)L$ is a central ideal of R, and is not zero unless $D(L) = 0$. Should $D(R)L = 0$, then $L \subseteq \text{ann}(D(R))$, the left or right annihilator of $(D(R))$, the ideal $D(R)$ generates. It is easy to see that $D(L) \subseteq D(\text{ann}(D(R))) \subseteq D(R) \cap \text{ann}(D(R)) = 0$, since R is semiprime. Consequently, to prove the existence of a nonzero central ideal, it suffices to assume that $D(L) \neq 0$ and show that $RD(R)L$ is central. Equivalently, we need to prove that for each prime ideal P of R, the image of $RD(R)L$ is central in R/P. This is clear if $D(R)L \subseteq P$, so we need only consider those prime ideals with $D(R)L \not\subseteq P$.

Let P be a prime ideal of R so that $D(R)L \not\subseteq P$, and suppose that $D(P) \subseteq P$. In this case, D induces a derivation E on R/P via $E(r + P) = E(r) + P$ and our hypothesis carries over from R to R/P using E and the left ideal $L + P \subseteq R/P$. Applying Theorem 1 gives either $E = 0$, $L + P \subseteq P$, or R/P commutative. Since the first two possibilities each force $D(R)L \subseteq P$, we must conclude that R/P is commutative, so $RD(R)L + P$ is central in R/P. □
We may assume now that $D(R)L \not\subset P$ and $D(P) \not\subset P$. It is straightforward to check that $D(P) + P = B \subseteq R/P$ is a nonzero ideal. For any $t \in P$ and $y \in L$ our assumption that $[D((ty + y)^k), (ty + y)^k]_n = 0$, taken modulo P becomes $[\sum_{i=0}^{k-1} y^i (D(t)y + D(y))y^{k-i-1}, y^k]_n = 0$ in R/P. But
\[
\left[\sum_{i=0}^{k-1} y^i D(y)y^{k-i-1}, y^k \right]_n = [D(y^k), y^k]_n = 0,
\]
so $[\sum_{i=0}^{k-1} y^i D(t)y^{k-i}, y^k]_n = 0$ in R/P, which means that the expression $f(X, y) = [\sum_{i=0}^{k-1} X^i Y^{k-i}, Y^k]_n$ yields $O_{R/P}$ when elements of B replace X and elements of $L + P$ replace Y. If for some $y \in (L + P) - P, yw = 0$ in R/P for $w \in R/P - O_{R/P}$, then for any $b \in B$ and $r \in R$, $O_{R/P} = f(wb, ry) = wb(ry)^{k(n+1)}$. Thus $wB(ry)^{k(n+1)} = 0$ in R/P, and since B is a nonzero ideal and R/P is prime, we must conclude that $Ry + P$ is a nil left ideal of bounded index in R/P, forcing the contradiction $y \in P$ by Levitzki’s theorem [13, Lemma 1.1, p. 1]. Therefore, we may assume that each nonzero $y \in L + P$ has no right annihilator in R/P.

To simplify notation, we assume that R is a prime ring with a nonzero ideal B and nonzero left ideal L whose nonzero elements are left regular, that $f(X, y)$ is an identity for B for each $y \in L$, and show that R is commutative. Expanding $f(X, y)$ for $y \in L - 0$, yields the identity $\sum_{v=0}^n n_j y^j Xy^{v-j}$ for B, where n_j are integers, $n_0 = 1$, and $v = k(n + 1)$. This is a generalized linear identity for B, so by [18, Lemma 1, p. 766], $\{1, y, \ldots, y^k\}$ must be $C(R)$ dependent. Let $m(y) = y^n + \cdots + c_1 y + c_0 = 0$ with $c_i \in C(R)$ and s minimal. The definition of Q allows us to choose a nonzero ideal I of R so that all $c_i I \subseteq R$. Thus if $c_0 = 0$ and $m(y) = yg(y)$, then $g(y)I \subseteq R$, so $g(y)I$ is in the right annihilator of y, and $g(y)I = 0$ forces $g(y) = 0$, contradicting the minimality of s. Therefore $c_0 \neq 0$ and $J = c_0 I = Ic_0 \subseteq R$. Now $f(X, y)$ is a polynomial identity for $B \cap J \subseteq L$, and so for its central localization, a finite dimensional central simple algebra [16, Theorem 2, p. 57]. Applying [20, Lemma 2, p. 732] shows that $B \cap J$ is commutative or that $f(X, y)$ is an identity for some $M_d(F)$ for F a field and $d > 1$. But $f(e_{12}, e_{22}) = e_{12} \neq 0$, for e_{12} and e_{22} matrix units in $M_d(F)$, so $B \cap J$ is commutative, forcing R to be commutative [14, Corollary, p. 7], and showing that our original semiprime ring must contain the nonzero central ideal $RD(R)L$.

Finally, we must show that $D(L), D(R)L \subseteq M$, the maximal central ideal of our semiprime ring R. We have just proven that $RD(R)L \subseteq M$, so by the Lemma $D(R)L \subseteq M$ and $D(R)D(L) \subseteq D(D(R)L) + D^2(R)L \subseteq D(M) + M = M$. Hence
\[
D(L)RD(L) \subseteq D(LR)D(L) + M \subseteq M,
\]
and the semiprimeness of M by the Lemma forces $D(L) \subseteq M$. Therefore, the proof of the Main Theorem is complete.

It is clear that the Main Theorem generalizes both [9] and [20], and in the way we mentioned after Theorem 1, [8] as well. We end the paper with another consequence of the Main Theorem by giving an extension to one-sided ideals of [2, Theorem 3, p. 385] and [7, Theorem 2, p. 120].

Theorem 2. Let R be a semiprime ring and L a nonzero left ideal of R. If for integers $n, k \geq 1$, and some $a \in R, [a, x^k]_n = 0$ for all $x \in L$, then $[a, L] = 0$. When R is a prime ring, then $a \in Z(R)$, the center of R.
Proof. Define a derivation \(D \) of \(R \) by \(D(r) = [r, a] \). Then for all \(x \in L \),

\[-[D(x^k), x^k]_{n-1} = D(x^k, x^k)_{n-1} = [a, x^k]_{n} = 0.
\]

By the Main Theorem, either \(D = 0 \) or \(D(L) \subseteq Z(R) \). When \(D = 0 \), \(a \in Z(R) \) is immediate, and when \(D(L) \subseteq Z(R) \), \([a, L, R] = 0 \). In particular, if \(y \in L \) and

\[0 = [a, ay, r] = [a[a, y], r] = [a, r][a, y],\]

so letting \(r = ys \) for \(s \in R \) shows that \([a, y]R[a, y] = 0 \). Since \(R \) is semiprime we are forced to conclude that \([a, L] = 0 \). When \(R \) is prime, \(0 = [a, RL] = [a, R]L \), so \(a \in Z(R) \), proving the theorem. \(\square \)

References

Department of Mathematics, University of Southern California, Los Angeles, California 90089-1113
E-mail address: clanski@math.usc.edu