Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The index number of an $R$-space:
An extension of a result of M.Takeuchi's


Author: Cristián U. Sánchez
Journal: Proc. Amer. Math. Soc. 125 (1997), 893-900
MSC (1991): Primary 53C30; Secondary 53C35
DOI: https://doi.org/10.1090/S0002-9939-97-03517-X
MathSciNet review: 1343722
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: M. Takeuchi proved the following nice result: The ``two-number'' of a symmetric $R$-space is equal to the sum of the Betti numbers of the space with coefficients in $Z_2$. In the present paper an extension of this result is given for general $R$-spaces.


References [Enhancements On Off] (What's this?)

  • [B] R. Bott, An application of the Morse theory to the topology of Lie groups, Bull. Soc. Math. France 84 (1956), 251-281. MR 19:291a
  • [Ch-N] B. Y. Chen and T. Nagano, A Riemannian geometric invariant and its applications to a problem of Borel and Serre, Trans. Amer. Math. Soc. 308 (1988), 273-297. MR 89j:53046
  • [F] D. Ferus, Symmetric submanifolds of Euclidean space, Math. Ann. 247 (1980), 81-93. MR 81i:53040
  • [H] S. Helgason, Differential geometry, Lie groups and symmetric spaces, Academic Press, New York, 1978. MR 80k:53081
  • [J] J. A. Jimenez, Existence of Hermitian $n$-symmetric spaces and of noncommutative naturally reductive spaces, Math. Z. 196 (1987), 133-139. MR 89b:53088a
  • [K] O. Kowalski, Generalized symmetric spaces, Lecture Notes in Math., vol. 805, Springer, Berlin, Heidelberg, and New York, 1980. MR 83d:53036
  • [M] I. G. Macdonald, Algebraic structure of Lie groups, Representation Theory of Lie Groups, London Math. Soc. Lecture Note Ser., vol. 34, Cambridge University Press, 1979, pp. 91-150. MR 81j:22001
  • [S] C. U. Sanchez, The invariant of Chen-Nagano on flag manifolds, Proc. Amer. Math. Soc. 118 (1993), 1237-1242. MR 93j:53066
  • [S1] C. U. Sanchez, The tightness of certain almost complex submanifolds, Proc. Amer. Math. Soc. 110 (1990), 807-811. MR 91b:53070
  • [T] M. Takeuchi, Two-number of symmetric $R$-spaces, Nagoya Math J. 115 (1989), 43-46. MR 90i:53066
  • [T-K] M. Takeuchi and S. Kobayashi, Minimal imbeddings of $R$-spaces, J. Differential Geometry 2 (1968), 203-215. MR 39:366
  • [W] J. Wolf, The action of a real semisimple group on a complex flag manifold I: Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc. 75 (1969), 1121-1237. MR 40:4477

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 53C30, 53C35

Retrieve articles in all journals with MSC (1991): 53C30, 53C35


Additional Information

Cristián U. Sánchez
Affiliation: Fa. M.A.F., Universidad de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
Email: csanchez@mate.uncor.edu

DOI: https://doi.org/10.1090/S0002-9939-97-03517-X
Received by editor(s): August 5, 1994
Received by editor(s) in revised form: June 12, 1995
Additional Notes: The author’s research was partially supported by CONICET and CONICOR, Argentina
Communicated by: Roe W. Goodman
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society