Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Boundary values of holomorphic semigroups


Authors: Wolfgang Arendt, Omar El Mennaoui and Matthias Hieber
Journal: Proc. Amer. Math. Soc. 125 (1997), 635-647
MSC (1991): Primary 47D06, 47F05
DOI: https://doi.org/10.1090/S0002-9939-97-03529-6
MathSciNet review: 1346961
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The concept of boundary values of holomorphic semigroups is used to give a new proof of a result due to Hörmander, saying that the operator $i\Delta $ generates a $C_0$-semigroup on $L^p(\mathbb R^N)$ if and only if $p=2$. Using a recent result on Laplace transforms by Prüss one obtains by this theory also a new proof of the classical characterization theorem of holomorphic semigroups.


References [Enhancements On Off] (What's this?)

  • [Am] H. Amann, Linear and Quasilinear Parabolic Problems, Birkhäuser-Verlag, Basel, 1995. MR 96g:34088
  • [Ar] W. Arendt, Vector-valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987), 327-352. MR 89a:47064
  • [A-B] W. Arendt, C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306 (1988), 837-852. MR 89g:47053
  • [B-deL] K. Boyadzhiev, R. deLaubenfels, Boundary values of holomorphic semigroups, Proc. Amer. Math. Soc. 118 (1993), 113-118. MR 93f:47043
  • [C-W] R. R. Coifman, G. Weiss, Transference Methods in Analysis, Conf. Board Math. Sci., Reg. Conf. Series Math., 31, Amer. Math. Soc., Providence, R.I., 1977. MR 58:2020
  • [Co] J. B. Conway, Functions of One Complex Variable, Springer-Verlag, New York, Heidelberg, Berlin, 1973. MR 56:5843
  • [Da] E. B. Davies, One-parameter Semigroups, Academic Press, London, 1980. MR 82i:47060
  • [deL] R. deLaubenfels, Existence Families, Functional Calculi and Evolution Equations, Springer Lecture Notes in Math. 1570, Berlin, 1994. MR 96b:47047
  • [D-V] G. Dore, A. Venni, On the closedness of the sum of two closed operators, Math. Z. 196, (1987), 189-201. MR 88m:47072
  • [El1] O. El Mennaoui, Trace des semigroupes holomorphes singuliers a l'origine et comportement asymptotique, Ph. D. Thesis, Besançon, (1992).
  • [El2] -, Holomorphic continuations of $C_0$-semigroups on Banach spaces, Semigroup Forum 49 (1994), 89-97. MR 95a:47036
  • [Go] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, New York, 1985. MR 87c:47056
  • [Hi1] M. Hieber, Integrated semigroups and differential operators on $L^p$ spaces, Math. Ann. 291 (1991), 1-16. MR 92g:47052
  • [Hi2] -, $L^p$ spectra of pseudo-differential operators generating integrated semigroups, Trans. Amer. Math. Soc. 347 (1995), 4023-4035. MR 95m:47099
  • [H-P] E. Hille, R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc., Providence, R.I., 1957. MR 19:664d
  • [Hö] L. Hörmander, Estimates for translation invariant operators in $L^p$ spaces, Acta Math. 104 (1960), 93-140. MR 22:12389
  • [Ja1] M. Jazar, Sur la théorie de la distribution spectrale et applications aux problèmes de Cauchy, Ph. D. Thesis, Poitiers, (1991).
  • [Ja2] M. Jazar, Fractional powers of the momentum of a spectral distribution, Proc. Amer. Math. Soc. 123 (1995), 1805-1813. MR 95g:47059
  • [Ka] T. Kato, Perturbation Theory of Linear Operators, Springer-Verlag, Berlin, Heidelberg, New York, 1966. MR 34:3324
  • [Kom] H. Komatsu, Fractional powers of operators, Pacific J. Math. 9 (1966), 285-346. MR 34:1862
  • [Kor] J. Korevaar, On Newman's quick way to the prime number theorem, Math. Intelligencer 4 (1982), 108-115. MR 84b:10063
  • [Na] R. Nagel (ed.), One-parameter Semigroups of Positive Operators, Springer Lecture Notes in Math. 1184, Berlin, 1985.
  • [Pa] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. MR 85g:47061
  • [Pr] J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, Verlag, Basel, 1993. MR 94h:45010
  • [P-S] J. Prüss, H. Sohr, On operators with bounded imaginary powers in Banach spaces, Math. Z. 203 (1990), 429-452. MR 91b:47030

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 47D06, 47F05

Retrieve articles in all journals with MSC (1991): 47D06, 47F05


Additional Information

Wolfgang Arendt
Affiliation: Mathematik V, Universität Ulm, D-89069 Ulm, Germany

Omar El Mennaoui
Affiliation: Equipe de Mathématiques, Faculté des Sciences, Université Ibnon Zohr, Agadir, Morocco

Matthias Hieber
Affiliation: Mathematisches Institut I, Universität Karlsruhe, Englerstraße 2, D-76128 Karlsruhe, Germany

DOI: https://doi.org/10.1090/S0002-9939-97-03529-6
Received by editor(s): April 27, 1995
Received by editor(s) in revised form: July 7, 1995
Dedicated: Dedicated to Professor H. H. Schaefer on the Occasion of his 70th Birthday
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society