Wald's equation and asymptotic bias

of randomly stopped -statistics

Authors:
Victor H. de la Peña and Tze Leung Lai

Journal:
Proc. Amer. Math. Soc. **125** (1997), 917-925

MSC (1991):
Primary 60G40, 62L12; Secondary 62L10

DOI:
https://doi.org/10.1090/S0002-9939-97-03574-0

MathSciNet review:
1350937

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we make use of decoupling arguments and martingale inequalities to extend Wald's equation for sample sums to randomly stopped de-normalized -statistics. We also apply this result in conjunction with nonlinear renewal theory to obtain asymptotic expansions for the means of normalized -statistics from sequential samples.

**[AW]**Aras, G. and Woodroofe, M.,*Asymptotic expansions for the moments of a randomly stopped average*, Ann. Statist.**21**(1993), 503-519. MR**94a:62120****[CdlPT]**Chow, Y. S., de la Pea, V. H. and Teicher, H.,*Wald's equation for a class of de-normalized -statistics*, Ann. Probab.**21**(1993), 1151-1158. MR**94c:60064****[CT]**Chow, Y. S., and Teicher, H.,*Probability Theory: Independence, Interchangeability, Martingales*, Springer-Verlag, New York, 1978. MR**80a:60004****[Co]**Cox, D. R.,*A note on sequential estimation of means*, Proc. Cambridge Philos. Soc.**48**(1952), 447-450. MR**14:190e****[GS]**Grams, W. F. and Serfling, R. J.,*Convergence rates for -statistics and related statistics*, Ann. Statist.**1**(1973), 153-160. MR**49:1561****[Ha]**Halmos, P. R.,*The theory of unbiased estimation*, Ann. Math. Statist.**17**(1946), 34-43. MR**7:463g****[H]**Hoeffding, W.,*A class of statistics with asymptotically normal distribution*, Ann. Math. Statist.**19**(1948), 293-325. MR**10:134g****[K]**Klass, M. J.,*A method of approximating expectations of functions of sums of independent random variables*, Ann. Probab.**9**(1981), 413-428. MR**82f:60119****[LS]**Lai, T. L. and Siegmund, D.,*A nonlinear renewal theory with applications to sequential analysis***I**, Ann. Statist.**5**(1977), 946-954;**II**, Ann. Statist.**7**(1979), 60-76. MR**56:3935**; MR**80c:62100****[LW]**Lai, T. L. and Wang, J. Q.,*Edgeworth expansions for symmetric statistics with applications to bootstrap methods*, Statistica Sinica**3**(1993), 517-542. MR**95c:62019****[S1]**Siegmund, D.,*Estimation following sequential tests*, Biometrika**65**(1978), 341-349. MR**80f:62079****[S2]**Siegmund, D.,*Sequential Analysis: Tests and Confidence Intervals*, Springer-Verlag, New York, 1985. MR**87h:62145****[W1]**Woodroofe, M.,*Second order approximation for sequential point and interval estimation*, Ann. Statist.**5**(1977), 985-995. MR**58:13548****[W2]**Woodroofe, M.,*Nonlinear Renewal Theory in Sequential Analysis*, SIAM, Philadelphia, 1982. MR**83j:62118****[Z]**Zinn, J.,*Comparison of martingale difference sequences*, Probability in Banach spaces V, Lecture Notes in Math., vol. 1153, Springer-Verlag, Berlin, 1985, pp. 453-457. MR**87f:60070**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
60G40,
62L12,
62L10

Retrieve articles in all journals with MSC (1991): 60G40, 62L12, 62L10

Additional Information

**Victor H. de la Peña**

Affiliation:
Department of Statistics, Columbia University, 617 Mathematics Bldg., New York, New York 10027

Email:
vp@wald.stat.columbia.edu

**Tze Leung Lai**

Affiliation:
Department of Statistics, Stanford University, Sequoia Hall, Stanford, California 94305-4065

Email:
karola@playfair.stanford.edu

DOI:
https://doi.org/10.1090/S0002-9939-97-03574-0

Keywords:
Hoeffding decomposition,
decoupling,
martingales,
Wald's equation,
stopping times

Received by editor(s):
October 15, 1994

Received by editor(s) in revised form:
July 28, 1995

Additional Notes:
The first author’s research was supported by the National Science Foundation under DMS-9310682.

The second author’s research was supported by the National Science Foundation under DMS-9403794.

Communicated by:
Wei Y. Loh

Article copyright:
© Copyright 1997
American Mathematical Society