Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Group algebras whose units
satisfy a group identity

Authors: Antonio Giambruno, Sudarshan Sehgal and Angela Valenti
Journal: Proc. Amer. Math. Soc. 125 (1997), 629-634
MSC (1991): Primary 16S34; Secondary 20C05
MathSciNet review: 1350944
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $FG$ be the group algebra of a torsion group over an infinite field $F$. Let $U$ be the group of units of $FG$. We prove that if $U$ satisfies a group identity, then $FG$ satisfies a polynomial identity. This confirms a conjecture of Brian Hartley.

References [Enhancements On Off] (What's this?)

  • 1. M. Dokuchaev and J. Z. Goncalves, Semigroup identities on units of integral group rings, Glasgow Math. J. (to appear).
  • 2. J. Z. Goncalves, Free subgroups of units in group rings, Canad. Math. Bull. 27 (1984), 309-312. MR 85k:20021
  • 3. J. Z. Goncalves and A. Mandel, Semigroup identities on units of group algebras, Arch. Math. 57 (1991), 539-545. MR 93g:16049
  • 4. A. Giambruno, E. Jespers and A. Valenti, Group identities on units of rings, Arch. Math. 63 (1994), 241-296. MR 95h:16044
  • 5. P. Menal, Private letter to B. Hartley, April 6, 1981.
  • 6. D. S. Passman, The Algebraic Structure of Group Rings, John Wiley, New York, 1977. MR 81d:16001
  • 7. I. Reiner, Maximal Orders, Academic Press, New York, 1975. MR 52:13910
  • 8. S. K. Sehgal, Topics in Group Rings, Marcel Dekker, New York, 1978. MR 80j:16001
  • 9. -, Units in Integral Group Rings, Longman, Essex, 1993. MR 94m:16039
  • 10. D. S. Warhurst, Topics in Group Rings, Thesis, Manchester, 1981.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 16S34, 20C05

Retrieve articles in all journals with MSC (1991): 16S34, 20C05

Additional Information

Antonio Giambruno
Affiliation: $\mathrm{(A. Giambruno and A. Valenti)}$ Dipartimento di Matematica, Universitá di Palermo, via Archirafi 34, 90123 Palermo, Italy

Sudarshan Sehgal
Affiliation: $\mathrm{(S. Sehgal)}$ Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

Received by editor(s): June 26, 1995
Additional Notes: Research supported by NR and MURST of Italy and NSERC of Canada.
Communicated by: Ronald M. Solomon
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society