Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Group algebras whose units
satisfy a group identity


Authors: Antonio Giambruno, Sudarshan Sehgal and Angela Valenti
Journal: Proc. Amer. Math. Soc. 125 (1997), 629-634
MSC (1991): Primary 16S34; Secondary 20C05
MathSciNet review: 1350944
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $FG$ be the group algebra of a torsion group over an infinite field $F$. Let $U$ be the group of units of $FG$. We prove that if $U$ satisfies a group identity, then $FG$ satisfies a polynomial identity. This confirms a conjecture of Brian Hartley.


References [Enhancements On Off] (What's this?)

  • 1. M. Dokuchaev and J. Z. Goncalves, Semigroup identities on units of integral group rings, Glasgow Math. J. (to appear).
  • 2. Jairo Zacarias Gonçalves, Free subgroups of units in group rings, Canad. Math. Bull. 27 (1984), no. 3, 309–312. MR 749637, 10.4153/CMB-1984-046-7
  • 3. J. Z. Gonçalves and A. Mandel, Semigroup identities on units of group algebras, Arch. Math. (Basel) 57 (1991), no. 6, 539–545. MR 1135408, 10.1007/BF01199058
  • 4. A. Giambruno, E. Jespers, and A. Valenti, Group identities on units of rings, Arch. Math. (Basel) 63 (1994), no. 4, 291–296. MR 1290601, 10.1007/BF01189563
  • 5. P. Menal, Private letter to B. Hartley, April 6, 1981.
  • 6. Donald S. Passman, The algebraic structure of group rings, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. MR 470211
  • 7. I. Reiner, Maximal orders, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], London-New York, 1975. London Mathematical Society Monographs, No. 5. MR 0393100
  • 8. Sudarshan K. Sehgal, Topics in group rings, Monographs and Textbooks in Pure and Applied Math., vol. 50, Marcel Dekker, Inc., New York, 1978. MR 508515
  • 9. S. K. Sehgal, Units in integral group rings, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 69, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. With an appendix by Al Weiss. MR 1242557
  • 10. D. S. Warhurst, Topics in Group Rings, Thesis, Manchester, 1981.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 16S34, 20C05

Retrieve articles in all journals with MSC (1991): 16S34, 20C05


Additional Information

Antonio Giambruno
Affiliation: $\mathrm{(A. Giambruno and A. Valenti)}$ Dipartimento di Matematica, Universitá di Palermo, via Archirafi 34, 90123 Palermo, Italy
Email: giambruno@ipamat.math.unipa.it, avalenti@ipamat.math.unipa.it

Sudarshan Sehgal
Affiliation: $\mathrm{(S. Sehgal)}$ Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
Email: ssehgal@schur.math.ualberta.ca

DOI: https://doi.org/10.1090/S0002-9939-97-03581-8
Received by editor(s): June 26, 1995
Additional Notes: Research supported by NR and MURST of Italy and NSERC of Canada.
Communicated by: Ronald M. Solomon
Article copyright: © Copyright 1997 American Mathematical Society